Hybrid photodetectors with 2D materials and quantum dots (QDs) offer new opportunities for spectral detection given their high mobilities and spectral tunability, respectively. Herein, the study presents a novel architecture of alternating PbS QDs with graphene monolayers positioned at different depths and with independent contacts. This geometry enables the probing of the photocurrent depth profile and therefore of different spectral bands. The study realizes devices with up to five graphene layers and five QD layers intercalated, using only one type of QDs (Single‐Bandgap devices) with an exciton absorption peak at 920 nm, as well as devices with different types of QDs (Multi‐Bandgap devices) with exciton peaks at 850, 1190, and 1350 nm. Since the absorption depth and photoresponse is wavelength dependent, each graphene has a different spectral response, which opens the path for spectral analysis. As expected, it is observed that top graphene layers have stronger response than deeper graphene layers, especially for short wavelengths. However, for the case of Multi‐Bandgap devices, a negative photoresponse coefficient is even observed for longer wavelengths, showing stronger response for deeper layers than for top layers. This intercalated architecture can be used for compact multispectral photodetection without any diffractive or beam splitting component.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Free, publicly-accessible full text available July 19, 2025 -
Photodetectors based on colloidal quantum dots (CQDs) and single layer graphene (SLG) have shown high responsivity due to the synergy of strong light absorption from CQDs and high mobility from SLG. However, it is still challenging to achieve high-density and small-footprint devices on a chip to meet the demand for their integration into electronic devices. Even though there are numerous approaches to pattern the chemically fragile CQD films, usually they require non-conventional approaches such as stamping and surface modification that may be non-compatible with semiconductor processing. In this study, we show that conventional lithography and dry etching can be used to pattern QD active films by employing a graphene monolayer passivation/protective layer that protects the surface ligands of CQDs. This protective layer avoids damage induced by lithography process solvents that deteriorate the carrier mobility of CQDs and therefore the photoresponse. Herein we report patterning of CQDs using conventional UV photolithography, achieving reproducible five-micron length PbS CQDs/SLG photodetectors with a responsivity of 10 8 A W −1 . We have also fabricated thirty-six PbS CQDs/SLG photodetectors on a single chip to establish micron size photodetectors. This process offers an approach to pattern QDs with conventional UV lithography and dry etching semiconductor technology to facilitate their integration into current semiconductor commercial technology.more » « less
-
Quantum dots (QDs) offer several advantages in optoelectronics such as easy solution processing, strong light absorption and size tunable direct bandgap. However, their major limitation is their poor film mobility and short diffusion length (<250 nm). This has restricted the thickness of QD film to ∼200–300 nm due to the restriction that the diffusion length imposes on film thickness in order to keep efficient charge collection. Such thin films result in a significant decrease in quantum efficiency for λ > 700 nm in QDs photodetector and photovoltaic devices, causing a reduced photoresponsivity and a poor absorption towards the near-infrared part of the sunlight spectrum. Herein, we demonstrate 1 μm thick QDs photodetectors with intercalated graphene charge collectors that avoid the significant drop of quantum efficiency towards λ > 700 nm observed in most QD optoelectronic devices. The 1 μm thick intercalated QD films ensure strong light absorption while keeping efficient charge extraction with a quantum efficiency of 90%–70% from λ = 600 nm to 950 nm using intercalated graphene layers as charge collectors with interspacing distance of 100 nm. We demonstrate that the effect of graphene on light absorption is minimal. We achieve a time-modulation response of <1 s. We demonstrate that this technology can be implemented on flexible PET substrates, showing 70% of the original performance after 1000 times bending test. This system provides a novel approach towards high-performance photodetection and high conversion photovoltaic efficiency with quantum dots and on flexible substrates.more » « less
-
Abstract Hybrid graphene and quantum dots (QDs) photodetectors merge the excellent conductivity and ambipolar electric field sensitivity of graphene, with the unique properties of QDs. The photoresponsivity of these devices depends strongly on the charge transfer at the graphene/QDs interface. Here 1‐pyrene butyric acid (PBA)‐coated PbS QDs with single layer graphene (SLG) are used to investigate the effect of pyrene as a π–π mediator to enhance charge transfer at the SLG/QDs junction under illumination. The surface chemistry at the QD–QD and SLG/QD interface is studied with the conventional tetrabutylammonium iodide (TBAI) QD linker. The hybrid SLG/QD photodetectors with PBA as a SLG‐QD linker demonstrate a photoresponse up to 30% higher than that recorded for devices where only TBAI is used, due to the strong electron coupling between SLG and QDs. Transconductance measurements show that PBA provokes electron depletion in SLG ascribed to the tendency to delocalize the QDs holes, favoring their transfer to SLG. This surface ligand is found to improve the interaction between the QDs light absorbers and the SLG charge collector, leading to an increased photodetection response. This demonstrates that ligand engineering can enhance charge dynamics and boost the performance of the hybrid device.
-
Abstract Hybrid graphene (Gr)–quantum dot (QD) photodetectors have shown ultrahigh photoresponsivity combining the strong light absorption of QDs with the high mobility of Gr. QDs absorb light and generate photocarriers that are efficiently transported by Gr. Typically, hybrid PbS–QD/graphene photodetectors operate by transferring photogenerated holes from the QDs to Gr while photoelectrons stay in the QDs inducing a photogating mechanism that achieves a responsivity of 6 × 107A W−1. However, despite such high gain, these systems have poor charge collection with quantum efficiency below 25%. Herein, a ZnO intermediate layer (PbS‐QD/ZnO/Gr) is introduced to improve charge collection by forming an effective p‐n PbS‐ZnO junction driving the electrons to the ZnO layer and then to Gr. This improves the photoresponsivity of the devices by nearly an order of magnitude with respect to devices without ZnO. Charge transfer to Gr is demonstrated by monitoring the change in Fermi level under illumination for conventional PbS‐QD/Gr and for ZnO intermediate PbS‐QD/ZnO/Gr devices. These results improve the capabilities of hybrid QD/Gr configurations for optoelectronic devices.
-
Abstract Charge collection is critical in any photodetector or photovoltaic device. Novel materials such as quantum dots (QDs) have extraordinary light absorption properties, but their poor mobility and short diffusion length limit efficient charge collection using conventional top/bottom contacts. In this work, a novel architecture based on multiple intercalated chemical vapor deposition graphene monolayers distributed in an orderly manner inside a QD film is studied. The intercalated graphene layers ensure that at any point in the absorbing material, photocarriers will be efficiently collected and transported. The devices with intercalated graphene layers have superior quantum efficiency over single‐bottom graphene/QD devices, overcoming the known restriction that the diffusion length imposes on film thickness. QD film with increased thickness shows efficient charge collection over the entire λ ≈ 500–1000 nm spectrum. This architecture could be applied to boost the performance of other low‐cost materials with poor mobility, allowing efficient collection for films thicker than their diffusion length.