skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Al-Mamun, Nahid Sultan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In this study, we explore the rejuvenation of a Zener diode degraded by high electrical stress, leading to a leftward shift, and broadening of the Zener breakdown voltage knee, alongside a 57% reduction in forward current. We employed a non-thermal annealing method involving high-density electric pulses with short pulse width and low frequency. The annealing process took <30 s at near-ambient temperature. Raman spectroscopy supports the electrical characterization, showing enhancement in crystallinity to explain the restoration of the breakdown knee followed by improvement in forward current by ∼85%.

     
    more » « less
  2. Thermal annealing is a widely used strategy to enhance semiconductor device performance. However, the process is complex for multi-material multi-layered semiconductor devices, where thermoelastic stresses from lattice constant and thermal expansion coefficient mismatch may create more defects than those annealed. We propose an alternate low temperature annealing technique, which utilizes the electron wind force (EWF) induced by small duty cycle high density pulsed current. To demonstrate its effectiveness, we intentionally degrade AlGaN/GaN high electron mobility transistors (HEMTs) with accelerated OFF-state stressing to increase ON-resistance ∼182.08% and reduce drain saturation current ∼85.82% of pristine condition at a gate voltage of 0 V. We then performed the EWF annealing to recover the corresponding values back to ∼122.21% and ∼93.10%, respectively. The peak transconductance, degraded to ∼76.58% of pristine at the drain voltage of 3 V, was also recovered back to ∼92.38%. This recovery of previously degraded transport properties is attributed to approximately 80% recovery of carrier mobility, which occurs during EWF annealing. We performed synchrotron differential aperture x-ray microscopy measurements to correlate these annealing effects with the lattice structural changes. We found a reduction of lattice plane spacing of (001) planes and stress within the GaN layer under the gate region after EWF annealing, suggesting a corresponding decrease in defect density. Application of this low-temperature annealing technique for in-operando recovery of degraded electronic devices is discussed.

     
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  3. Strain plays an important role in the performance and reliability of AlGaN/GaN high electron mobility transistors (HEMTs). However, the impact of strain on the performance of proton irradiated GaN HEMTs is yet unknown. In this study, we investigated the effects of strain relaxation on the properties of proton irradiated AlGaN/GaN HEMTs. Controlled strain relief is achieved locally using the substrate micro-trench technique. The strain relieved devices experienced a relatively smaller increase of strain after 5 MeV proton irradiation at a fluence of 5 × 1014 cm−2 compared to the non-strain relieved devices, i.e., the pristine devices. After proton irradiation, both pristine and strain relieved devices demonstrate a reduction of drain saturation current (Ids,sat), maximum transconductance (Gm), carrier density (ns), and mobility (μn). Depending on the bias conditions the pristine devices exhibit up to 32% reduction of Ids,sat, 38% reduction of Gm, 15% reduction of ns, and 48% reduction of μn values. In contrast, the strain relieved devices show only up to 13% reduction of Ids,sat, 11% reduction of Gm, 9% reduction of ns, and 30% reduction of μn values. In addition, the locally strain relieved devices show smaller positive shift of threshold voltage compared to the pristine devices after proton irradiation. The less detrimental impact of proton irradiation on the transport properties of strain relieved devices could be attributed to reduced point defect density producing lower trap center densities, and evolution of lower operation related stresses due to lower initial residual strain.

     
    more » « less
    Free, publicly-accessible full text available December 14, 2024
  4. Abstract MXenes are atomically layered carbides and nitrides of transition metals that have potential for micro-devices applications in energy storage, conversion, and transport. This emerging family of materials is typically studied as nanosheets or ultra-thin films, for which the internal defects are mostly nanoscale flake-flake interface separation type. However, micro-devices applications would require thicker films, which exhibit very high density of microscale pores. Electrical conductivity of thicker MXenes is significantly lower than nanosheets, and the physics of defect size and density control are also different and less understood. Current art is to perform high temperature annealing to improve the electrical conductivity, which can structurally alter or degrade MXene. The key contribution of this study is a room-temperature annealing process that exploits the synergy between electrical pulses and compressive mechanical loading. Experimental results indicate over a 90% increase in electrical conductivity, which reflects a decrease in void size and density. In the absence of compressive loading, the same process resulted in a conductivity increase of approximately 75%. Analytical spectroscopy and microscopy indicated that the proposed multi-stimuli process kept the MXene composition intact while significantly decreasing the void size and density. 
    more » « less
  5. In this work, we demonstrate the rejuvenation of Ti/4H-SiC Schottky barrier diodes after forward current-induced degradation, at room temperature and in a few seconds, by exploiting the physics of high-energy electron interactions with defects. The diodes were intentionally degraded to a 42% decrease in forward current and a 9% increase in leakage current through accelerated electrical stressing. The key feature of our proposed rejuvenation process is very high current density electrical pulsing with low frequency and duty cycle to suppress any temperature rise. The primary stimulus is, therefore, the electron wind force, which is derived from the loss of the momentum of the high energy electrons upon collision with the defects. Such defect-specific or “just in location” mobilization of atoms allows a significant decrease in defect concentration, which is not possible with conventional thermal annealing that requires higher temperatures and longer times. We show evidence of rejuvenation with additional improvement in leakage current (16%) and forward current (38%) beyond the pristine condition. Transmission electron microscopy, geometric phase analysis, Raman spectroscopy, and energy dispersive x-ray-spectroscopy reveal the enhancement of defects and interfaces. The ultrafast and room temperature process has the potential for rejuvenating electronic devices operating in high power and harsh environmental conditions. 
    more » « less
  6. The energy and beam current dependence of Ga+focused ion beam milling damage on the sidewall of vertical rectifiers fabricated on n-type Ga2O3was investigated with 5–30 kV ions and beam currents from 1.3–20 nA. The sidewall damage was introduced by etching a mesa along one edge of existing Ga2O3rectifiers. We employed on-state resistance, forward and reverse leakage current, Schottky barrier height, and diode ideality factor from the vertical rectifiers as potential measures of the extent of the ion-induced sidewall damage. Rectifiers of different diameters were exposed to the ion beams and the “zero-area” parameters extracted by extrapolating to zero area and normalizing for milling depth. Forward currents degraded with exposure to any of our beam conductions, while reverse current was unaffected. On-state resistance was found to be most sensitive of the device parameters to Ga+beam energy and current. Beam current was the most important parameter in creating sidewall damage. Use of subsequent lower beam energies and currents after an initial 30 kV mill sequence was able to reduce residual damage effects but not to the point of initial lower beam current exposures.

     
    more » « less
  7. Abstract

    While radiation is known to degrade AlGaN/GaN high-electron-mobility transistors (HEMTs), the question remains on the extent of damage governed by the presence of an electrical field in the device. In this study, we induced displacement damage in HEMTs in both ON and OFF states by irradiating with 2.8 MeV Au4+ion to fluence levels ranging from1.72×1010to3.745×1013ions cm−2, or 0.001–2 displacement per atom (dpa). Electrical measurement is donein situ, and high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray (EDX), geometrical phase analysis (GPA), and micro-Raman are performed on the highest fluence of Au4+irradiated devices. The selected heavy ion irradiation causes cascade damage in the passivation, AlGaN, and GaN layers and at all associated interfaces. After just 0.1 dpa, the current density in the ON-mode device deteriorates by two orders of magnitude, whereas the OFF-mode device totally ceases to operate. Moreover, six orders of magnitude increase in leakage current and loss of gate control over the 2-dimensional electron gas channel are observed. GPA and Raman analysis reveal strain relaxation after a 2 dpa damage level in devices. Significant defects and intermixing of atoms near AlGaN/GaN interfaces and GaN layer are found from HRTEM and EDX analyses, which can substantially alter device characteristics and result in complete failure.

     
    more » « less
  8. Focused Ga + ion milling of lightly Si-doped, n-type Ga 2 O 3 was performed with 2–30 kV ions at normal incidence and beam currents that were a function of beam voltage, 65 nA for 30 kV, 26 nA for 10 kV, 13 nA for 5 kV, and 7.1 nA for 2 kV, to keep the milling depth constant at 100 nm. Approximate milling rates were 15, 6, 2.75, and 1.5  μm 3 /s for 30, 10, 5, and 2 kV, respectively. The electrical effects of the ion damage were characterized by Schottky barrier height and diode ideality factor on vertical rectifier structures comprising 10  μm epitaxial n-Ga 2 O 3 on n + Ga 2 O 3 substrates, while the structural damage was imaged by transmission electron microscopy. The reverse bias leakage was largely unaffected even by milling at 30 kV beam energy, while the forward current-voltage characteristics showed significant deterioration at 5 kV, with an increase in the ideality factor from 1.25 to 2.25. The I–V characteristics no longer showed rectification for the 30 kV condition. Subsequent annealing up to 400 °C produced substantial recovery of the I–V characteristics for all beam energies and was sufficient to restore the initial ideality factor completely for beam energies up to 5 kV. Even the 30 kV-exposed rectifiers showed a recovery of the ideality factor to 1.8. The surface morphology of the ion-milled Ga 2 O 3 was smooth even at 30 kV ion energy, with no evidence for preferential sputtering of the oxygen. The surface region was not amorphized by extended ion milling (35 min) at 5 kV with the samples held at 25 °C, as determined by electron diffraction patterns, and significant recovery of the lattice order was observed after annealing at 400 °C. 
    more » « less
  9. Strain localization in microelectronic devices commonly arises from device geometry, materials, and fabrication processing. In this study, we controllably relieve the local strain field of AlGaN/GaN HEMTs by milling micro-trenches underneath the channel and compare the device performance as a function of the relieved strain as well as radiation dosage. Micro-Raman results suggest that the trenches locally relax the strain in device layers, decreasing the 2DEG density and mobility. Intriguingly, such strain relaxation is shown to minimize the radiation damage, measured after 10 Mrads of 60Co-gamma exposure. For example, a 6-trench device showed only ∼8% and ∼6% decrease in saturation drain current and maximum transconductance, respectively, compared to corresponding values of ∼15% and ∼30% in a no-trench device. Negative and positive threshold voltage shifts are observed in 6-trench and no-trench devices, respectively, after gamma radiation. We hypothesize that the extent of gamma radiation damage depends on the strain level in the devices. Thus, even though milling a trench decreases 2DEG mobility, such decrease under gamma radiation is far less in a 6-trench device (∼1.5%) compared to a no-trench device (∼20%) with higher built-in strain.

     
    more » « less