Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Medical steerable needles can follow 3D curvilinear trajectories to avoid anatomical obstacles and reach clinically significant targets inside the human body. Automating steerable needle procedures can enable physicians and patients to harness the full potential of steerable needles by maximally leveraging their steerability to safely and accurately reach targets for medical procedures such as biopsies. For the automation of medical procedures to be clinically accepted, it is critical from a patient care, safety, and regulatory perspective to certify the correctness and effectiveness of the planning algorithms involved in procedure automation. In this paper, we take an important step toward creating a certifiable optimal planner for steerable needles. We present an efficient, resolution-complete motion planner for steerable needles based on a novel adaptation of multi-resolution planning. This is the first motion planner for steerable needles that guarantees to compute in finite time an obstacle-avoiding plan (or notify the user that no such plan exists), under clinically appropriate assumptions. Based on this planner, we then develop the first resolution-optimal motion planner for steerable needles that further provides theoretical guarantees on the quality of the computed motion plan, that is, global optimality, in finite time. Compared to state-of-the-art steerable needle motion planners, we demonstrate with clinically realistic simulations that our planners not only provide theoretical guarantees but also have higher success rates, have lower computation times, and result in higher quality plans.more » « less
-
Inspection planning, the task of planning motions for a robot that enable it to inspect a set of points of interest, has applications in domains such as industrial, field, and medical robotics. Inspection planning can be computationally challenging, as the search space over motion plans grows exponentially with the number of points of interest to inspect. We propose a novel method, Incremental Random Inspection-roadmap Search (IRIS), that computes inspection plans whose length and set of successfully inspected points asymptotically converge to those of an optimal inspection plan. IRIS incrementally densifies a motion-planning roadmap using a sampling-based algorithm and performs efficient near-optimal graph search over the resulting roadmap as it is generated. We prove the resulting algorithm is asymptotically optimal under very general assumptions about the robot and the environment. We demonstrate IRIS’s efficacy on a simulated inspection task with a planar five DOF manipulator, on a simulated bridge inspection task with an Unmanned Aerial Vehicle (UAV), and on a medical endoscopic inspection task for a continuum parallel surgical robot in cluttered human anatomy. In all these systems IRIS computes higher-quality inspection plans orders of magnitudes faster than a prior state-of-the-art method.more » « less
-
The inspection-planning problem calls for computing motions for a robot that allow it to inspect a set of points of interest (POIs) while considering plan quality (e.g., plan length). This problem has applications across many domains where robots can help with inspection, including infrastructure maintenance, construction, and surgery. Incremental Random Inspection-roadmap Search (IRIS) is an asymptotically-optimal inspection planner that was shown to compute higher-quality inspection plans orders of magnitudes faster than the prior state-of-the-art method. In this paper, we significantly accelerate the performance of IRIS to broaden its applicability to more challenging real-world applications. A key computational challenge that IRIS faces is effectively searching roadmaps for inspection plans—a procedure that dominates its running time. In this work, we show how to incorporate lazy edge-evaluation techniques into IRIS’s search algorithm and how to reuse search efforts when a roadmap undergoes local changes. These enhancements, which do not compromise IRIS’s asymptotic optimality, enable us to compute inspection plans much faster than the original IRIS. We apply IRIS with the enhancements to simulated bridge inspection and surgical inspection tasks and show that our new algorithm for some scenarios can compute similar-quality inspection plans 570× faster than prior work.more » « less
-
null (Ed.)Navigation and motion control of a robot to a destination are tasks that have historically been performed with the assumption that contact with the environment is harmful. This makes sense for rigid-bodied robots, where obstacle collisions are fundamentally dangerous. However, because many soft robots have bodies that are low-inertia and compliant, obstacle contact is inherently safe. As a result, constraining paths of the robot to not interact with the environment is not necessary and may be limiting. In this article, we mathematically formalize interactions of a soft growing robot with a planar environment in an empirical kinematic model. Using this interaction model, we develop a method to plan paths for the robot to a destination. Rather than avoiding contact with the environment, the planner exploits obstacle contact when beneficial for navigation. We find that a planner that takes into account and capitalizes on environmental contact produces paths that are more robust to uncertainty than a planner that avoids all obstacle contact.more » « less
-
null (Ed.)For robots using motion planning algorithms such as RRT and RRT*, the computational load can vary by orders of magnitude as the complexity of the local environment changes. To adaptively provide such computation, we propose Fog Robotics algorithms in which cloud-based serverless lambda computing provides parallel computation on demand. To use this parallelism, we propose novel motion planning algorithms that scale effectively with an increasing number of serverless computers. However, given that the allocation of computing is typically bounded by both monetary and time constraints, we show how prior learning can be used to efficiently allocate resources at runtime. We demonstrate the algorithms and application of learned parallel allocation in both simulation and with the Fetch commercial mobile manipulator using Amazon Lambda to complete a sequence of sporadically computationally intensive motion planning tasks.more » « less
-
null (Ed.)
Abstract Bronchoscopic diagnosis and intervention in the lung is a new frontier for steerable needles, where they have the potential to enable minimally invasive, accurate access to small nodules that cannot be reliably accessed today. However, the curved, flexible bronchoscope requires a much longer needle than prior work has considered, with complex interactions between the needle and bronchoscope channel, introducing new challenges in steerable needle control. In particular, friction between the working channel and needle causes torsional windup along the bronchoscope, the effects of which cannot be directly measured at the tip of thin needles embedded with 5 degree-of-freedom magnetic tracking coils. To compensate for these effects, we propose a new torsional deadband-aware Extended Kalman Filter to estimate the full needle tip pose including the axial angle, which defines its steering direction. We use the Kalman Filter estimates with an established sliding mode controller to steer along desired trajectories in lung tissue. We demonstrate that this simple torsional deadband model is sufficient to account for the complex interactions between the needle and endoscope channel for control purposes. We measure mean final targeting error of 1.36 mm in phantom tissue and 1.84 mm in ex-vivo porcine lung, with mean trajectory following error of 1.28 mm and 1.10 mm, respectively.