skip to main content

Search for: All records

Creators/Authors contains: "Ananthanarayanan, Ganesh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
    Cameras are deployed at scale with the purpose of searching and tracking objects of interest (e.g., a suspected person) through the camera network on live videos. Such cross-camera analytics is data and compute intensive, whose costs grow with the number of cameras and time. We present Spatula, a cost-efficient system that enables scaling cross-camera analytics on edge compute boxes to large camera networks by leveraging the spatial and temporal cross-camera correlations. While such correlations have been used in computer vision community, Spatula uses them to drastically reduce the communication and computation costs by pruning search space of a query identity (e.g., ignoring frames not correlated with the query identity’s current position). Spatula provides the first system substrate on which cross-camera analytics applications can be built to efficiently harness the cross-camera correlations that are abundant in large camera deployments. Spatula reduces compute load by $8.3\times$ on an 8-camera dataset, and by $23\times-86\times$ on two datasets with hundreds of cameras (simulated from real vehicle/pedestrian traces). We have also implemented Spatula on a testbed of 5 AWS DeepLens cameras. 
    more » « less
  4. Driven by advances in computer vision and the falling costs of camera hardware, organizations are deploying video cameras en masse for the spatial monitoring of their physical premises. Scaling video analytics to massive camera deployments, however, presents a new and mounting challenge, as compute cost grows proportionally to the number of camera feeds. This paper is driven by a simple question: can we scale video analytics in such a way that cost grows sublinearly, or even remains constant, as we deploy more cameras, while inference accuracy remains stable, or even improves. We believe the answer is yes. Our key observation is that video feeds from wide-area camera deployments demonstrate significant content correlations (e.g. to other geographically proximate feeds), both in space and over time. These spatio-temporal correlations can be harnessed to dramatically reduce the size of the inference search space, decreasing both workload and false positive rates in multi-camera video analytics. By discussing use-cases and technical challenges, we propose a roadmap for scaling video analytics to large camera networks, and outline a plan for its realization. 
    more » « less