skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Anderson, Stephen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Illumination of aerobic acetonitrile solutions of bipyridine-ligated Co(ii) chlorodiketonate complexes results in O2-dependent aliphatic C–C bond cleavage with high18O incorporation. 
    more » « less
  2. A pincer iron(iii) catalyst for the oxidation and chlorination of C(sp3)–H bonds was developed. 
    more » « less
  3. null (Ed.)
    We report synthetic, structural and reactivity investigations of tris-(2-pyridylmethyl)amine (TPA)-ligated Cu( ii ) 1,3-diketonate complexes. These complexes exhibit anaerobic retro-Claisen type C–C bond cleavage reactivity which exceeds that found in analogs supported by chelate ligands with fewer and/or weaker pyridyl interactions. 
    more » « less
  4. Extreme skin depth engineering (e-skid) can be applied to integrated photonics to manipulate the evanescent field of a waveguide. Here we demonstrate thate-skidcan be implemented in two directions in order to deterministically engineer the evanescent wave allowing for dense integration with enhanced functionalities. In particular, by increasing the skin depth, we enable the creation of two-dimensional (2D)e-skiddirectional couplers with large gaps and operational bandwidth. Here we experimentally validate 2De-skidfor integrated photonics in a complementary metal–oxide semiconductor (CMOS) photonics foundry and demonstrate strong coupling with a gap of 1.44 µm. 
    more » « less