skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Arnold, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Paper in revise and resubmit 
    more » « less
    Free, publicly-accessible full text available December 31, 2026
  2. Ma, S (Ed.)
    The Maximally Informative Next Experiment or MINE is a new experimental design approach for experiments, such as those in omics, in which the number of effects or parameters p greatly exceeds the number of samples n (p > n). Classical experimental design presumes n > p for inference about parameters and its application to p > n can lead to over-fitting. To overcome p > n, MINE is an ensemble method, which makes predictions about future experiments from an existing ensemble of models consistent with available data in order to select the most informative next experiment. Its advantages are in exploration of the data for new relationships with n < p and being able to integrate smaller and more tractable experiments to replace adaptively one large classic experiment as discoveries are made. Thus, using MINE is model-guided and adaptive over time in a large omics study. Here, MINE is illustrated on two distinct multi-year experiments, one involving genetic networks in Neurospora crassa and a second one involving a Genome Wide Association Study or GWAS in Sorghum bicolor as a comparison to classic experimental design in an agricultural setting. 
    more » « less
    Free, publicly-accessible full text available March 26, 2026
  3. ABSTRACT Rubisco, the most prevalent protein on Earth, catalyzes both a reaction that initiates C3 carbon fixation, and a reaction that initiates photorespiration, which stimulates protein synthesis. Regulation of the balance between these reactions under atmospheric CO2 fluctuations remains poorly understood. We have hypothesized that vascular plants maintain organic carbon‐to‐nitrogen homeostasis by adjusting the relative activities of magnesium and manganese in chloroplasts to balance carbon fixation and nitrate assimilation rates. The following examined the influence of magnesium and manganese on carboxylation and oxygenation for rubisco purified from two ecotypes of Plantago lanceolataL.: one adapted to the elevated CO2 atmospheres that occur near a natural CO2 spring and the other adapted to more typical CO2 atmospheres that occur nearby. The plastid DNA coding for the large unit of rubisco was similar in both ecotypes. The kinetics of rubiscos from the two ecotypes differed more when associated with manganese than magnesium. Specificity for CO2over O2 (Sc/o) for rubisco from both ecotypes was higher when the enzymes were bound to magnesium than manganese. Differences in the responses of rubisco from P. lanceolata to the metals may account for the adaptation of this species to different CO2 environments. 
    more » « less
    Free, publicly-accessible full text available December 24, 2025
  4. Riquelme, Meritxell; Akhtar, Andam; Rosenthal, Christina (Ed.)
    Utilizing a microfluidic chip with serpentine channels, we inoculated the chip with an agar plug with Neurospora crassa mycelium and successfully captured individual hyphae in channels. For the first time, we report the presence of an autonomous clock in hyphae. Fluorescence of a mCherry reporter gene driven by a clock-controlled gene-2 promoter (ccg-2p) was measured simultaneously along hyphae every half an hour for at least 6 days. We entrained single hyphae to light over a wide range of day lengths, including 6,12, 24, and 36 h days. Hyphae tracked in individual serpentine channels were highly synchronized (K = 0.60-0.78). Furthermore, hyphae also displayed temperature compensation properties, where the oscillation period was stable over a physiological range of temperatures from 24 °C to 30 °C (Q10 = 1.00-1.10). A Clock Tube Model developed could mimic hyphal growth observed in the serpentine chip and provides a mechanism for the stable banding patterns seen in race tubes at the macroscopic scale and synchronization through molecules riding the growth wave in the device. 
    more » « less
  5. Conference presentation at the annual Allied Social Sciences Conference in San Antonio, Jan 2024 
    more » « less
  6. Wheat and rice produce nutritious grains that provide 32% of the protein in the human diet globally. Here, we examine how genetic modifications to improve assimilation of the inorganic nitrogen forms ammonium and nitrate into protein influence grain yield of these crops. Successful breeding for modified nitrogen metabolism has focused on genes that coordinate nitrogen and carbon metabolism, including those that regulate tillering, heading date, and ammonium assimilation. Gaps in our current understanding include (1) species differences among candidate genes in nitrogen metabolism pathways, (2) the extent to which relative abundance of these nitrogen forms across natural soil environments shape crop responses, and (3) natural variation and genetic architecture of nitrogen-mediated yield improvement. Despite extensive research on the genetics of nitrogen metabolism since the rise of synthetic fertilizers, only a few projects targeting nitrogen pathways have resulted in development of cultivars with higher yields. To continue improving grain yield and quality, breeding strategies need to focus concurrently on both carbon and nitrogen assimilation and consider manipulating genes with smaller effects or that underlie regulatory networks as well as genes directly associated with nitrogen metabolism. 
    more » « less
  7. Abstract Premise: The agar‐based culture of Arabidopsis seedlings is widely used for quantifying root traits. Shoot traits are generally overlooked in these studies, probably because the rosettes are often askew. A technique to assess the shoot surface area of seedlings grown inside agar culture dishes would facilitate simultaneous root and shoot phenotyping. Methods: We developed an image processing workflow in Python that estimates rosette area of Arabidopsis seedlings on agar culture dishes. We validated this method by comparing its output with other metrics of seedling growth. As part of a larger study on genetic variation in plant responses to nitrogen form and concentration, we measured the rosette areas from more than 2000 plate images. Results: The rosette area measured from plate images was strongly correlated with the rosette area measured from directly overhead and moderately correlated with seedling mass. Rosette area in the large image set was significantly influenced by genotype and nitrogen treatment. The broad‐sense heritability of leaf area measured using this method was 0.28. Discussion: These results indicated that this approach for estimating rosette area produces accurate shoot phenotype data. It can be used with image sets for which other methods of leaf area quantification prove unsuitable. 
    more » « less
  8. Abstract Public understanding about complex issues such as climate change relies heavily on online resources. Yet the role that online instruction should assume in post-secondary science education remains contentious despite its near ubiquity during the COVID-19 pandemic. The objective here was to compare the performance of 1790 undergraduates taking either an online or face-to-face version of an introductory course on climate change. Both versions were taught by a single instructor, thus, minimizing instructor bias. Women, seniors, English language learners, and humanities majors disproportionately chose to enroll in the online version because of its ease of scheduling and accessibility. After correcting for performance-gaps among different demographic groups, the COVID-19 pandemic had no significant effect on online student performance and students in the online version scored 2% lower (on a scale of 0–100) than those in the face-to-face version, a penalty that may be a reasonable tradeoff for the ease of scheduling and accessibility that these students desire. 
    more » « less