Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recently, bug-bounty programs have gained popularity and become a significant part of the security culture of many organizations. Bug-bounty programs enable organizations to enhance their security posture by harnessing the diverse expertise of crowds of external security experts (i.e., bug hunters). Nonetheless, quantifying the benefits of bug-bounty programs remains elusive, which presents a significant challenge for managing them. Previous studies focused on measuring their benefits in terms of the number of vulnerabilities reported or based on the properties of the reported vulnerabilities, such as severity or exploitability. However, beyond these inherent properties, the value of a report also depends on the probability that the vulnerability would be discovered by a threat actor before an internal expert could discover and patch it. In this paper, we present a data-driven study of the Chromium and Firefox vulnerability-reward programs. First, we estimate the difficulty of discovering a vulnerability using the probability of rediscovery as a novel metric. Our findings show that vulnerability discovery and patching provide clear benefits by making it difficult for threat actors to find vulnerabilities; however, we also identify opportunities for improvement, such as incentivizing bug hunters to focus more on development releases. Second, we compare the types of vulnerabilities that are discovered internally vs. externally and those that are exploited by threat actors. We observe significant differences between vulnerabilities found by external bug hunters, internal security teams, and external threat actors, which indicates that bug-bounty programs provide an important benefit by complementing the expertise of internal teams, but also that external hunters should be incentivized more to focus on the types of vulnerabilities that are likely to be exploited by threat actors.more » « less
-
There are more than 7,000 public transit agencies in the U.S. (and many more private agencies), and together, they are responsible for serving 60 billion passenger miles each year. A well-functioning transit system fosters the growth and expansion of businesses, distributes social and economic benefits, and links the capabilities of community members, thereby enhancing what they can accomplish as a society. Since affordable public transit services are the backbones of many communities, this work investigates ways in which Artificial Intelligence (AI) can improve efficiency and increase utilization from the perspective of transit agencies. This book chapter discusses the primary requirements, objectives, and challenges related to the design of AI-driven smart transportation systems. We focus on three major topics. First, we discuss data sources and data. Second, we provide an overview of how AI can aid decision-making with a focus on transportation. Lastly, we discuss computational problems in the transportation domain and AI approaches to these problems.more » « less
-
COVID-19 has radically transformed urban travel behavior throughout the world. Agencies have had to provide adequate service while navigating a rapidly changing environment with reduced revenue. As COVID-19-related restrictions are lifted, transit agencies are concerned about their ability to adapt to changes in ridership behavior and public transit usage. To aid their becoming more adaptive to sudden or persistent shifts in ridership, we addressed three questions: To what degree has COVID-19 affected fixed-line public transit ridership and what is the relationship between reduced demand and -vehicle trips? How has COVID-19 changed ridership patterns and are they expected to persist after restrictions are lifted? Are there disparities in ridership changes across socioeconomic groups and mobility-impaired riders? Focusing on Nashville and Chattanooga, TN, ridership demand and vehicle trips were compared with anonymized mobile location data to study the relationship between mobility patterns and transit usage. Correlation analysis and multiple linear regression were used to investigate the relationship between socioeconomic indicators and changes in transit ridership, and an analysis of changes in paratransit demand before and during COVID-19. Ridership initially dropped by 66% and 65% over the first month of the pandemic for Nashville and Chattanooga, respectively. Cellular mobility patterns in Chattanooga indicated that foot traffic recovered to a greater degree than transit ridership between mid-April and the last week in June, 2020. Education-level had a statistically significant impact on changes in fixed-line bus transit, and the distribution of changes in demand for paratransit services were similar to those of fixed-line bus transit.more » « less
-
Accurately predicting the ridership of public-transit routes provides substantial benefits to both transit agencies, who can dispatch additional vehicles proactively before the vehicles that serve a route become crowded, and to passengers, who can avoid crowded vehicles based on publicly available predictions. The spread of the coronavirus disease has further elevated the importance of ridership prediction as crowded vehicles now present not only an inconvenience but also a public-health risk. At the same time, accurately predicting ridership has become more challenging due to evolving ridership patterns, which may make all data except for the most recent records stale. One promising approach for improving prediction accuracy is to fine-tune the hyper-parameters of machine-learning models for each transit route based on the characteristics of the particular route, such as the number of records. However, manually designing a machine-learning model for each route is a labor-intensive process, which may require experts to spend a significant amount of their valuable time. To help experts with designing machine-learning models, we propose a neural-architecture and feature search approach, which optimizes the architecture and features of a deep neural network for predicting the ridership of a public-transit route. Our approach is based on a randomized local hyper-parameter search, which minimizes both prediction error as well as the complexity of the model. We evaluate our approach on real-world ridership data provided by the public transit agency of Chattanooga, TN, and we demonstrate that training neural networks whose architectures and features are optimized for each route provides significantly better performance than training neural networks whose architectures and features are generic.more » « less
-
Public transit agencies struggle to maintain transit accessibility with reduced resources, unreliable ridership data, reduced vehicle capacities due to social distancing, and reduced services due to driver unavailability. In collaboration with transit agencies from two large metropolitan areas in the USA, we are designing novel approaches for addressing the afore-mentioned challenges by collecting accurate real-time ridership data, providing guidance to commuters, and performing operational optimization for public transit. We estimate rider-ship data using historical automated passenger counting data, conditional on a set of relevant determinants. Accurate ridership forecasting is essential to optimize the public transit schedule, which is necessary to improve current fixed lines with on-demand transit. Also, passenger crowding has been a problem for public transportation since it deteriorates passengers’ wellbeing and satisfaction. During the COVID-19 pandemic, passenger crowding has gained importance since it represents a risk for social distancing violations. Therefore, we are creating optimization models to ensure that social distancing norms can be adequately followed while ensuring that the total demand for transit is met. We will then use accurate forecasts for operational optimization that includes (a) proactive fixed-line schedule optimization based on predicted demand, (b) dispatch of on-demand micro-transit, prioritizing at-risk populations, and (c) allocation of vehicles to transit and cargo trips, considering exigent vehicle maintenance requirements (i.e., disinfection). Finally, this paper presents some initial results from our project regarding the estimation of ridership in public transit.more » « less
-
null (Ed.)Public transit agencies struggle to maintain transit accessibility with reduced resources, unreliable ridership data, reduced vehicle capacities due to social distancing, and reduced services due to driver unavailability. In collaboration with transit agencies from two large metropolitan areas in the USA, we are designing novel approaches for addressing the afore-mentioned challenges by collecting accurate real-time ridership data, providing guidance to commuters, and performing operational optimization for public transit. We estimate rider-ship data using historical automated passenger counting data, conditional on a set of relevant determinants. Accurate ridership forecasting is essential to optimize the public transit schedule, which is necessary to improve current fixed lines with on-demand transit. Also, passenger crowding has been a problem for public transportation since it deteriorates passengers’ wellbeing and satisfaction. During the COVID-19 pandemic, passenger crowding has gained importance since it represents a risk for social distancing violations. Therefore, we are creating optimization models to ensure that social distancing norms can be adequately followed while ensuring that the total demand for transit is met. We will then use accurate forecasts for operational optimization that includes \textit(a) proactive fixed-line schedule optimization based on predicted demand, \textit(b) dispatch of on-demand micro-transit, prioritizing at-risk populations, and \textit(c) allocation of vehicles to transit and cargo trips, considering exigent vehicle maintenance requirements (\textiti.e., disinfection). Finally, this paper presents some initial results from our project regarding the estimation of ridership in public transit.more » « less
-
null (Ed.)Public transit is central to cultivating equitable communities. Meanwhile, the novel coronavirus disease COVID-19 and associated social restrictions has radically transformed ridership behavior in urban areas. Perhaps the most concerning aspect of the COVID-19 pandemic is that low-income and historically marginalized groups are not only the most susceptible to economic shifts but are also most reliant on public transportation. As revenue decreases, transit agencies are tasked with providing adequate public transportation services in an increasingly hostile economic environment. Transit agencies therefore have two primary concerns. First, how has COVID-19 impacted ridership and what is the new post-COVID normal? Second, how has ridership varied spatio-temporally and between socio-economic groups? In this work we provide a data-driven analysis of COVID-19’s affect on public transit operations and identify temporal variation in ridership change. We then combine spatial distributions of ridership decline with local economic data to identify variation between socio-economic groups. We find that in Nashville and Chattanooga, TN, fixed-line bus ridership dropped by 66.9% and 65.1% from 2019 baselines before stabilizing at 48.4% and 42.8% declines respectively. The largest declines were during morning and evening commute time. Additionally, there was a significant difference in ridership decline between the highest-income areas and lowest-income areas (77% vs 58%) in Nashville.more » « less
-
null (Ed.)Public transit is central to cultivating equitable communities. Meanwhile, the novel coronavirus disease COVID-19 and associated social restrictions has radically transformed ridership behavior in urban areas. Perhaps the most concerning aspect of the COVID-19 pandemic is that low-income and historically marginalized groups are not only the most susceptible to economic shifts but are also most reliant on public transportation. As revenue decreases, transit agencies are tasked with providing adequate public transportation services in an increasingly hostile economic environment. Transit agencies therefore have two primary concerns. First, how has COVID-19 impacted ridership and what is the new post-COVID normal? Second, how has ridership varied spatio-temporally and between socio-economic groups? In this work we provide a data-driven analysis of COVID-19’s affect on public transit operations and identify temporal variation in ridership change. We then combine spatial distributions of ridership decline with local economic data to identify variation between socio-economic groups. We find that in Nashville and Chattanooga, TN, fixed-line bus ridership dropped by 66.9% and 65.1% from 2019 baselines before stabilizing at 48.4% and 42.8% declines respectively. The largest declines were during morning and evening commute time. Additionally, there was a significant difference in ridership decline between the highest-income areas and lowest-income areas (77% vs 58%) in Nashville.more » « less
-
null (Ed.)Traffic networks are one of the most critical infrastructures for any community. The increasing integration of smart and connected sensors in traffic networks provides researchers with unique opportunities to study the dynamics of this critical community infrastructure. Our focus in this paper is on the failure dynamics of traffic networks. We are specifically interested in analyzing the cascade effects of traffic congestions caused by physical incidents, focusing on developing mechanisms to isolate and identify the source of a congestion. To analyze failure propagation, it is crucial to develop (a) monitors that can identify an anomaly and (b) a model to capture the dynamics of anomaly propagation. In this paper, we use real traffic data from Nashville, TN to demonstrate a novel anomaly detector and a Timed Failure Propagation Graph based diagnostics mechanism. Our novelty lies in the ability to capture the the spatial information and the interconnections of the traffic network as well as the use of recurrent neural network architectures to learn and predict the operation of a graph edge as a function of its immediate peers, including both incoming and outgoing branches. To study physical traffic incidents, we augment the real data with simulated data generated using SUMO, a microscopic traffic simulator. Our results show that we are able to build LSTM-based traffic-speed predictors with an average loss of 6.55 × 10^−4 compared to Gaussian Process Regression based predictors with an average loss of 1.78 × 10^−2. We are also able to detect anomalies with high precision and recall, resulting in an AUC of 0.8507 for the precision-recall curve. Finally, formulating the cascade propagation problem as a Timed Failure Propagation Graph, we are able to identify the source of a failure accurately.more » « less
-
Traffic networks are one of the most critical infrastructures for any community. The increasing integration of smart and connected sensors in traffic networks provides researchers with unique opportunities to study the dynamics of this critical community infrastructure. Our focus in this paper is on the failure dynamics of traffic networks. By failure, we mean in this domain the hindrance of the normal operation of a traffic network due to cyber anomalies or physical incidents that cause cascaded congestion throughout the network. We are specifically interested in analyzing the cascade effects of traffic congestion caused by physical incidents, focusing on developing mechanisms to isolate and identify the source of a congestion. To analyze failure propagation, it is crucial to develop (a) monitors that can identify an anomaly and (b) a model to capture the dynamics of anomaly propagation. In this paper, we use real traffic data from Nashville, TN to demonstrate a novel anomaly detector and a Timed Failure Propagation Graph based diagnostics mechanism. Our novelty lies in the ability to capture the the spatial information and the interconnections of the traffic network as well as the use of recurrent neural network architectures to learn and predict the operation of a graph edge as a function of its immediate peers, including both incoming and outgoing branches. Our results show that our LSTM-based traffic-speed predictors attain an average mean squared error of 6.55 10−4 on predicting normalized traffic speed, while Gaussian Process Regression based predictors attain a much higher aver- age mean squared error of 1.78 10−2. We are also able to detect anomalies with high precision and recall, resulting in an AUC (Area Under Curve) of 0.8507 for the precision- recall curve. To study physical traffic incidents, we augment the real data with simulated data generated using SUMO, a traffic simulator. Finally, we analyzed the cascading effect of the congestion propagation by formulating the problem as a Timed Failure Propagation Graph, which led us in identifying the source of a failure/congestion accurately.more » « less