Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 1, 2025
-
Abstract We examined the seasonality of photosynthesis in 46 evergreen needleleaf (evergreen needleleaf forests (ENF)) and deciduous broadleaf (deciduous broadleaf forests (DBF)) forests across North America and Eurasia. We quantified the onset and end (StartGPPand EndGPP) of photosynthesis in spring and autumn based on the response of net ecosystem exchange of CO2to sunlight. To test the hypothesis that snowmelt is required for photosynthesis to begin, these were compared with end of snowmelt derived from soil temperature. ENF forests achieved 10% of summer photosynthetic capacity ∼3 weeks before end of snowmelt, while DBF forests achieved that capacity ∼4 weeks afterward. DBF forests increased photosynthetic capacity in spring faster (1.95% d−1) than ENF (1.10% d−1), and their active season length (EndGPP–StartGPP) was ∼50 days shorter. We hypothesized that warming has influenced timing of the photosynthesis season. We found minimal evidence for long‐term change in StartGPP, EndGPP, or air temperature, but their interannual anomalies were significantly correlated. Warmer weather was associated with earlier StartGPP(1.3–2.5 days °C−1) or later EndGPP(1.5–1.8 days °C−1, depending on forest type and month). Finally, we tested whether existing phenological models could predict StartGPPand EndGPP. For ENF forests, air temperature‐ and daylength‐based models provided best predictions for StartGPP, while a chilling‐degree‐day model was best for EndGPP. The root mean square errors (RMSE) between predicted and observed StartGPPand EndGPPwere 11.7 and 11.3 days, respectively. For DBF forests, temperature‐ and daylength‐based models yielded the best results (RMSE 6.3 and 10.5 days).more » « less
-
Abstract Fundamental axes of variation in plant traits result from trade-offs between costs and benefits of resource-use strategies at the leaf scale. However, it is unclear whether similar trade-offs propagate to the ecosystem level. Here, we test whether trait correlation patterns predicted by three well-known leaf- and plant-level coordination theories – the leaf economics spectrum, the global spectrum of plant form and function, and the least-cost hypothesis – are also observed between community mean traits and ecosystem processes. We combined ecosystem functional properties from FLUXNET sites, vegetation properties, and community mean plant traits into three corresponding principal component analyses. We find that the leaf economics spectrum (90 sites), the global spectrum of plant form and function (89 sites), and the least-cost hypothesis (82 sites) all propagate at the ecosystem level. However, we also find evidence of additional scale-emergent properties. Evaluating the coordination of ecosystem functional properties may aid the development of more realistic global dynamic vegetation models with critical empirical data, reducing the uncertainty of climate change projections.more » « less
-
Abstract Researchers use both experiments and observations to study the impacts of climate change on ecosystems, but results from these contrasting approaches have not been systematically compared for droughts. Using a meta-analysis and accounting for potential confounding factors, we demonstrate that aboveground biomass responded only about half as much to experimentally imposed drought events as to natural droughts. Our findings indicate that experimental results may underestimate climate change impacts and highlight the need to integrate results across approaches.more » « less
-
Abstract Plant functional traits can predict community assembly and ecosystem functioning and are thus widely used in global models of vegetation dynamics and land–climate feedbacks. Still, we lack a global understanding of how land and climate affect plant traits. A previous global analysis of six traits observed two main axes of variation: (1) size variation at the organ and plant level and (2) leaf economics balancing leaf persistence against plant growth potential. The orthogonality of these two axes suggests they are differently influenced by environmental drivers. We find that these axes persist in a global dataset of 17 traits across more than 20,000 species. We find a dominant joint effect of climate and soil on trait variation. Additional independent climate effects are also observed across most traits, whereas independent soil effects are almost exclusively observed for economics traits. Variation in size traits correlates well with a latitudinal gradient related to water or energy limitation. In contrast, variation in economics traits is better explained by interactions of climate with soil fertility. These findings have the potential to improve our understanding of biodiversity patterns and our predictions of climate change impacts on biogeochemical cycles.more » « less
-
A wide range of research shows that nutrient availability strongly influences terrestrial carbon (C) cycling and shapes ecosystem responses to environmental changes and hence terrestrial feedbacks to climate. Nonetheless, our understanding of nutrient controls remains far from complete and poorly quantified, at least partly due to a lack of informative, comparable, and accessible datasets at regional-to-global scales. A growing research infrastructure of multi-site networks are providing valuable data on C fluxes and stocks and are monitoring their responses to global environmental change and measuring responses to experimental treatments. These networks thus provide an opportunity for improving our understanding of C-nutrient cycle interactions and our ability to model them. However, coherent information on how nutrient cycling interacts with observed C cycle patterns is still generally lacking. Here, we argue that complementing available C-cycle measurements from monitoring and experimental sites with data characterizing nutrient availability will greatly enhance their power and will improve our capacity to forecast future trajectories of terrestrial C cycling and climate. Therefore, we propose a set of complementary measurements that are relatively easy to conduct routinely at any site or experiment and that, in combination with C cycle observations, can provide a robust characterization of the effects of nutrient availability across sites. In addition, we discuss the power of different observable variables for informing the formulation of models and constraining their predictions. Most widely available measurements of nutrient availability often do not align well with current modelling needs. This highlights the importance to foster the interaction between the empirical and modelling communities for setting future research priorities.more » « less