skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Baldwin, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Additive manufacturing has revolutionized structural optimization by enhancing component strength and reducing material requirements. One approach used to achieve these improvements is the application of multi-lattice structures. The performance of these structures heavily relies on the detailed design of mesostructural elements. Many current approaches use data-driven design to generate multi-lattice transition regions, making use of models that jointly address the geometry and properties of the mesostructures. However, it remains unclear whether the integration of mechanical properties into the data set for generating multi-lattice interpolations is beneficial beyond geometry alone. To address this issue, this work implements and evaluates a hybrid geometry/property machine learning model for generating multi-lattice transition regions. We compare the results of this hybrid model to results obtained using a geometry-only model. Our research determined that incorporating physical properties decreased the number of variables to address in the latent space, and therefore improves the ability of generative models for developing transition regions of multi-lattice structures. 
    more » « less
  2. The data generated during additive manufacturing (AM) practice can be used to train machine learning (ML) tools to reduce defects, optimize mechanical properties, or increase efficiency. In addition to the size of the repository, emerging research shows that other characteristics of the data also impact suitability of the data for AM-ML application. What should be done in cases for which the data in too small, too homogeneous, or otherwise insufficient? Data augmentation techniques present a solution, offering automated methods for increasing the quality of data. However, many of these techniques were developed for machine vision tasks, and hence their suitability for AM data has not been verified. In this study, several data augmentation techniques are applied to synthetic design repositories to characterize if and to what degree they enhance their performance as ML training sets. We discuss the comparative advantage of these data augmentation techniques across several canonical AM-ML tasks. 
    more » « less