skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bamieh, Bassam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider distributed consensus in networks where the agents have integrator dynamics of order two or higher (n>=2). We assume all feedback to be localized in the sense that each agent has a bounded number of neighbors and consider a scaling of the network through the addition of agents in a modular manner, i.e., without re-tuning controller gains upon addition. We show that standard consensus algorithms, which rely on relative state feedback, are subject to what we term scale fragilities, meaning that stability is lost as the network scales. For high-order agents (n>=3), we prove that no consensus algorithm with fixed gains can achieve consensus in networks of any size. That is, while a given algorithm may allow a small network to converge, it causes instability if the network grows beyond a certain finite size. This holds in families of network graphs whose algebraic connectivity, that is, the smallest non-zero Laplacian eigenvalue, is decreasing towards zero in network size (e.g. all planar graphs). For second-order consensus (n=2) we prove that the same scale fragility applies to directed graphs that have a complex Laplacian eigenvalue approaching the origin (e.g. directed ring graphs). The proofs for both results rely on Routh–Hurwitz criteria for complex-valued polynomials and hold true for general directed network graphs. We survey classes of graphs subject to these scale fragilities, discuss their scaling constants, and finally prove that a sub-linear scaling of nodal neighborhoods can suffice to overcome the issue. 
    more » « less
  2. The starting point of analysis of state space models is investigating existence, uniqueness and solution properties such as the semigroup property, and various formulas for the solutions. Several concepts such as the state transition matrix, the matrix exponential, the variations of constants formula (the Cauchy formula), the Peano-Baker series, and the Picard iteration are used to characterize solutions. In this note, a tutorial treatment is given where all of these concepts are shown to be various manifestations of a single abstract method, namely solving equations using an operator Neumann series involving the Volterra operator of forward integration. The matrix exponential, the Peano-Baker series, the Picard iteration, and the Cauchy formula can be "discovered" naturally from this Neumann series. The convergence of the series and iterations is a consequence of the key property of asymptotic nilpotence of the Volterra operator. This property is an asymptotic version of the nilpotence property of a strictly-lower-triangular matrix. 
    more » « less
  3. Analytic perturbation theory for matrices and operators is an immensely useful mathematical technique. Most elementary introductions to this method have their background in the physics literature, and quantum mechanics in particular. In this note, we give an introduction to this method that is independent of any physics notions, and relies purely on concepts from linear algebra. An additional feature of this presentation is that matrix notation and methods are used throughout. In particular, we formulate the equations for each term of the analytic expansions of eigenvalues and eigenvectors as {\em matrix equations}, namely Sylvester equations in particular. Solvability conditions and explicit expressions for solutions of such matrix equations are given, and expressions for each term in the analytic expansions are given in terms of those solutions. This unified treatment simplifies somewhat the complex notation that is commonly seen in the literature, and in particular, provides relatively compact expressions for the non-Hermitian and degenerate cases, as well as for higher order terms. 
    more » « less
  4. How could the Fourier and other transforms be naturally discovered if one didn't know how to postulate them? In the case of the Discrete Fourier Transform (DFT), we show how it arises naturally out of analysis of circulant matrices. In particular, the DFT can be derived as the change of basis that simultaneously diagonalizes all circulant matrices. In this way, the DFT arises naturally from a linear algebra question about a set of matrices. Rather than thinking of the DFT as a signal transform, it is more natural to think of it as a single change of basis that renders an entire set of mutually-commuting matrices into simple, diagonal forms. The DFT can then be ``discovered'' by solving the eigenvalue/eigenvector problem for a special element in that set. A brief outline is given of how this line of thinking can be generalized to families of linear operators, leading to the discovery of the other common Fourier-type transforms, as well as its connections with group representations theory. 
    more » « less