skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bean, Jacob L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present the Rossiter–McLaughlin measurement of the sub-Neptune TOI-1759A b with MAROON-X. A joint analysis with MuSCAT3 photometry and nine additional TESS transits produces a sky-projected obliquity of ∣λ∣ = 4° ± 18°. We also derive a true obliquity ofψ= 24° ± 12° making this planet consistent with full alignment albeit to <1σ. With a period of 18.85 days and ana/R*of 40, TOI-1759A b is the longest period single sub-Neptune to have a measured obliquity. It joins a growing number of smaller planets which have had this measurement made and, along with K2-25 b, is the only single, aligned sub-Neptune known to date. We also provide an overview of the emerging distribution of obliquity measurements for planets withR< 8R. We find that these types of planets tend toward alignment, especially the sub-Neptunes and super-Earths, implying a dynamically cool formation history. The majority of misaligned planets in this category have 4 <R≤ 8Rand are more likely to be isolated than planets rather than in compact systems. We find this result to be significant at the 3σlevel, consistent with previous studies. In addition, we conduct injection and recovery testing on available archival radial velocity data to put limits on the presence of massive companions in these systems. Current archival data is insufficient for most systems to have detected a giant planet. 
    more » « less
    Free, publicly-accessible full text available August 25, 2026
  2. Abstract Ground-based high-resolution cross-correlation spectroscopy (HRCCS;R ≳ 15,000) is a powerful complement to space-based studies of exoplanet atmospheres. By resolving individual spectral lines, HRCCS can precisely measure chemical abundance ratios, directly constrain atmospheric dynamics, and robustly probe multidimensional physics. But the subtleties of HRCCS data sets—e.g., the lack of exoplanetary spectra visible by eye and the statistically complex process of telluric removal—can make interpreting them difficult. In this work, we seek to clarify the uncertainty budget of HRCCS with a forward-modeling approach. We present an HRCCS observation simulator,scope,55https://github.com/arjunsavel/scopethat incorporates spectral contributions from the exoplanet, star, tellurics, and instrument. This tool allows us to control the underlying data set, enabling controlled experimentation with complex HRCCS methods. Simulating a fiducial hot Jupiter data set (WASP-77Ab emission with IGRINS), we first confirm via multiple tests that the commonly used principal component analysis does not bias the planetary signal when few components are used. Furthermore, we demonstrate that mildly varying tellurics and moderate wavelength solution errors induce only mild decreases in HRCCS detection significance. However, limiting-case, strongly varying tellurics can bias the retrieved velocities and gas abundances. Additionally, in the low signal-to-noise ratio limit, constraints on gas abundances become highly non-Gaussian. Our investigation of the uncertainties and potential biases inherent in HRCCS data analysis enables greater confidence in scientific results from this maturing method. 
    more » « less
    Free, publicly-accessible full text available February 11, 2026
  3. Abstract MAROON-X is a state-of-the-art extreme-precision radial velocity spectrograph deployed on the 8.1 m Gemini-N telescope on Maunakea, Hawai’i. Using a stabilized Fabry–Pérot etalon for wavelength and drift calibration, MAROON-X has achieved a short-term precision of ∼30 cm s−1. However, due to a long-term drift in the etalon (2.2 cm s−1per day) and various interruptions of the instrument baseline over the first few years of operation, MAROON-X experiences radial velocity (RV) offsets between observing runs several times larger than the short-term precision during any individual run, which hinders the detection of longer-period signals. In this study, we analyze RV measurements of 11 targets that either exhibit small RV scatter or have signals that can be precisely constrained using Keplerian or Gaussian process models. Leveraging this ensemble, we calibrate MAROON-X’s run offsets for data collected between 2020 September and early 2024 January to a precision of ∼0.5 m s−1. When applying these calibrated offsets to HD 3651, a quiet star, we obtain residual velocities with an rms of <70 cm s−1in both the red and blue channels of MAROON-X over a baseline of 29 months. We also demonstrate the sensitivity of MAROON-X data calibrated with these offsets through a series of injection-recovery tests. Based on our findings, MAROON-X is capable of detecting sub m s−1signals out to periods of more than 1000 days. 
    more » « less
    Free, publicly-accessible full text available April 8, 2026
  4. Abstract We present an analysis of 126 new radial velocity measurements from the MAROON-X spectrograph to investigate the TOI-1266 system, which hosts two known transiting sub-Neptunes at 10.8 and 18.8 days. We integrated our measurements with existing HARPS-N measurements for this system and derived revised masses for TOI-1266 b and c ofMb= 4.09 ± 0.45MandMc= 2.64 ± 0.52M, respectively. The Keplerian fit from the combined datasets enabled an ≈35% and ≈41% improvement in mass precision for planet b and c, respectively, compared to the previously published values. With bulk densities ofρb= 1.25 ± 0.21 g cm−3andρc= 1.51 ± 0.39 g cm−3, the planets are among the lowest density sub-Neptunes orbiting an M dwarf. They are both consistent with rocky cores surrounded by hydrogen helium envelopes. TOI-1266 c may also be consistent with a water-rich composition, but we disfavor that interpretation from an Occam's razor perspective. 
    more » « less
    Free, publicly-accessible full text available February 3, 2026
  5. Abstract High-resolution spectroscopy of exoplanet atmospheres provides insights into their composition and dynamics from the resolved line shape and depth of thousands of spectral lines. WASP-127 b is an extremely inflated sub-Saturn (Rp= 1.311RJup,Mp= 0.16MJup) with previously reported detections of H2O and CO2. However, the seeming absence of the primary carbon reservoir expected at WASP-127 b temperatures (Teq∼1400 K) from chemical equilibrium, CO, posed a mystery. In this manuscript, we present the analysis of high-resolution observations of WASP-127 b with the Immersion Grating Infrared Spectrometer on Gemini South. We confirm the presence of H2O (8.67σ) and report the detection of CO (4.34σ). Additionally, we conduct a suite of Bayesian retrieval analyses covering a hierarchy of model complexity and self-consistency. When freely fitting for the molecular gas volume mixing ratios, we obtain super-solar metal enrichment for H2O abundance of log10X H 2 O = −1.23 0.49 + 0.29 and a lower limit on the CO abundance of log10XCO≥–2.20 at 2σconfidence. We also report tentative evidence of photochemistry in WASP-127 b based upon the indicative depletion of H2S. This is also supported by the data preferring models with photochemistry over free-chemistry and thermochemistry. The overall analysis implies a super-solar (∼39× Solar; [M/H] = 1.59 0.30 + 0.30 ) metallicity for the atmosphere of WASP-127 b and an upper limit on its atmospheric C/O ratio as < 0.68. 
    more » « less
  6. Abstract Barnard’s Star is an old, single M dwarf star that comprises the second-closest extrasolar system. It has a long history of claimed planet detections from both radial velocities and astrometry. However, none of these claimed detections have so far withstood further scrutiny. Continuing this story, extreme precision radial velocity measurements from the ESPRESSO instrument have recently been used to identify four new sub-Earth-mass planet candidates around Barnard’s Star. We present here 112 radial velocities of Barnard’s Star from the MAROON-X instrument that were obtained independently to search for planets around this compelling object. The data have a typical precision of 30 cm s−1and are contemporaneous with the published ESPRESSO measurements (2021–2023). The MAROON-X data on their own confirm planet b (P= 3.154 days) and planet candidates c and d (P= 4.124 and 2.340 days, respectively). Furthermore, adding the MAROON-X data to the ESPRESSO data strengthens the evidence for planet candidate e (P= 6.739 days), thus leading to its confirmation. The signals from all four planets are <50 cm s−1, the minimum masses of the planets range from 0.19 to 0.34M, and the system is among the most compact known among late M dwarfs hosting low-mass planets. The current data rule out planets with masses >0.57M(with a 99% detection probability) in Barnard's Star’s habitable zone (P= 10–42 days). 
    more » « less
    Free, publicly-accessible full text available March 11, 2026
  7. Abstract A primary goal of exoplanet science is to measure the atmospheric composition of gas giants in order to infer their formation and migration histories. Common diagnostics for planet formation are the atmospheric metallicity ([M/H]) and the carbon-to-oxygen (C/O) ratio as measured through transit or emission spectroscopy. The C/O ratio in particular can be used to approximately place a planet’s initial formation radius from the stellar host, but a given C/O ratio may not be unique to formation location. This degeneracy can be broken by combining measurements of both the C/O ratio and the atmospheric refractory-to-volatile ratio. We report the measurement of both quantities for the atmosphere of the canonical ultrahot Jupiter WASP-121 b using the high-resolution (R= 45,000) IGRINS instrument on Gemini South. Probing the planet’s direct thermal emission in both pre- and post-secondary eclipse orbital phases, we infer that WASP-121 b has a significantly superstellar C/O ratio of 0.70 0.10 + 0.07 and a moderately superstellar refractory-to-volatile ratio at 3.83 1.67 + 3.62 × stellar. This combination is most consistent with formation between the soot line and H2O snow line, but we cannot rule out formation between the H2O and CO snow lines or beyond the CO snow line. We also measure velocity offsets between H2O, CO, and OH, potentially an effect of chemical inhomogeneity on the planet dayside. This study highlights the ability to measure both C/O and refractory-to-volatile ratios via high-resolution spectroscopy in the near-IRHandKbands. 
    more » « less
  8. Abstract Ultra-hot Jupiters (UHJs) are among the best targets for atmospheric characterization at high spectral resolution. Resolving their transmission spectra as a function of orbital phase offers a unique window into the 3D nature of these objects. In this work, we present three transits of the UHJ WASP-121b observed with Gemini-S/IGRINS. For the first time, we measure the phase-dependent absorption signals of CO and H2O in the atmosphere of an exoplanet, and we find that they are different. While the blueshift of CO increases during the transit, the absorption lines of H2O become less blueshifted with phase, and even show a redshift in the second half of the transit. These measurements reveal the distinct spatial distributions of both molecules across the atmospheres of UHJs. Also, we find that the H2O signal is absent in the first quarter of the transit, potentially hinting at cloud formation on the evening terminator of WASP-121b. To further interpret the absorption trails of CO and H2O, as well as the Doppler shifts of Fe previously measured with VLT/ESPRESSO, we compare the data to simulated transits of WASP-121b. To this end, we post-process the outputs of the global circulation models with a 3D Monte-Carlo radiative transfer code. Our analysis shows that the atmosphere of WASP-121b is subject to atmospheric drag, as previously suggested by small hotspot offsets inferred from phase-curve observations. Our study highlights the importance of phase-resolved spectroscopy in unravelling the complex atmospheric structure of UHJs and sets the stage for further investigations into their chemistry and dynamics. 
    more » « less
  9. Abstract Measurements of the carbon-to-oxygen (C/O) ratios of exoplanet atmospheres can reveal details about their formation and evolution. Recently, high-resolution cross-correlation analysis has emerged as a method of precisely constraining the C/O ratios of hot Jupiter atmospheres. We present two transits of the ultrahot Jupiter WASP-76b observed between 1.4 and 2.4μm with the high-resolution Immersion GRating INfrared Spectrometer on the Gemini-S telescope. We detected the presence of H2O, CO, and OH at signal-to-noise ratios of 6.93, 6.47, and 3.90, respectively. We performed two retrievals on this data set. A free retrieval for abundances of these three species retrieved a volatile metallicity of C + O H = 0.70 0.93 + 1.27 , consistent with the stellar value, and a supersolar carbon-to-oxygen ratio of C/O = 0.80 0.11 + 0.07 . We also ran a chemically self-consistent grid retrieval, which agreed with the free retrieval within 1σbut favored a slightly more substellar metallicity and solar C/O ratio ( C + O H = 0.74 0.17 + 0.23 and C/O = 0.59 0.14 + 0.13 ). A variety of formation pathways may explain the composition of WASP-76b. Additionally, we found systemic (Vsys) and Keplerian (Kp) velocity offsets which were broadly consistent with expectations from 3D general circulation models of WASP-76b, with the exception of a redshiftedVsysfor H2O. Future observations to measure the phase-dependent velocity offsets and limb differences at high resolution on WASP-76b will be necessary to understand the H2O velocity shift. Finally, we find that the population of exoplanets with precisely constrained C/O ratios generally trends toward super-solar C/O ratios. More results from high-resolution observations or JWST will serve to further elucidate any population-level trends. 
    more » « less
  10. Abstract Ground-based high-resolution and space-based low-resolution spectroscopy are the two main avenues through which transiting exoplanet atmospheres are studied. Both methods provide unique strengths and shortcomings, and combining the two can be a powerful probe into an exoplanet’s atmosphere. Within a joint atmospheric retrieval framework, we combined JWST NIRSpec/G395H secondary eclipse spectra and Gemini South/IGRINS pre- and post-eclipse thermal emission observations of the hot Jupiter WASP-77A b. Our inferences from the IGRINS and NIRSpec data sets are consistent with each other, and combining the two allows us to measure the gas abundances of H2O and CO, as well as the vertical thermal structure, with higher precision than either data set provided individually. We confirm WASP-77A b’s subsolar metallicity ([(C+O)/H] = −0.61 0.09 + 0.10 ) and solar C/O ratio (C/O = 0.57 0.06 + 0.06 ) . The two types of data are complementary, and our abundance inferences are mostly driven by the IGRINS data, while inference of the thermal structure is driven by the NIRSpec data. Our ability to draw inferences from the post-eclipse IGRINS data is highly sensitive to the number of singular values removed in the detrending process, potentially due to high and variable humidity. We also search for signatures for atmospheric dynamics in the IGRINS data and find that propagated ephemeris error can manifest as either an orbital eccentricity or a strong equatorial jet. Neither are detected when using more up-to-date ephemerides. However, we find moderate evidence of thermal inhomogeneity and measure a cooler nightside that presents itself in the later phases after secondary eclipse. 
    more » « less