skip to main content

Search for: All records

Creators/Authors contains: "Benson, Lisa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper describes the Engineering Education Research (EER) Peer Review Training (PERT) project, which is designed to develop EER scholars’ peer review skills through mentored reviewing experiences. Supported by the National Science Foundation, the overall programmatic goals of the PERT project are to establish and evaluate a mentored reviewer program for 1) EER journal manuscripts and 2) EER grant proposals. Concurrently, the project seeks to explore how EER scholars develop schema for evaluating EER scholarship, whether these schema are shared in the community, and how schema influence recommendations made to journal editors during the peer review process. To accomplish these goals, the PERT project leveraged the previously established Journal of Engineering Education (JEE) Mentored Reviewer Program, where two researchers with little reviewing experience are paired with an experienced mentor to complete three manuscript reviews collaboratively. In this paper we report on focus group and exit survey findings from the JEE Mentored Reviewer Program and discuss revisions to the program in response to those findings.
    Free, publicly-accessible full text available August 23, 2023
  2. This is the first of a series of studies that explore the relationship between disciplinary background and the weighting of various elements of a manuscript in peer reviewers’ determination of publication recommendations. Research questions include: (1) To what extent are tacit criteria for determining quality or value of EER manuscripts influenced by reviewers’ varied disciplinary backgrounds and levels of expertise? and (2) To what extent does mentored peer review professional development influence reviewers’ EER manuscript evaluations? Data were collected from 27 mentors and mentees in a peer review professional development program. Participants reviewed the same two manuscripts, using a form to identify strengths, weaknesses, and recommendations. Responses were coded by two researchers (70% IRR). Our findings suggest that disciplinary background influences reviewers’ evaluation of EER manuscripts. We also found evidence that professional development can improve reviewers’ understanding of EER disciplinary conventions. Deeper understanding of the epistemological basis for manuscript reviews may reveal ways to strengthen professional preparation in engineering education as well as other disciplines.
    Free, publicly-accessible full text available August 23, 2023
  3. This paper describes a peer reviewer mentoring program called the Engineering Education Research Peer Review Training (EER PERT) project and serves as a pilot study on longitudinal effects on researchers’ productivity and the impact of their work, differences in these factors for those who review journal manuscripts and those who review grant proposals, and what aspects of peer review training (knowledge, resources, collaborations, etc.) participants actually carry forward in their own research. Overall, the project seeks to investigate how engineering education research (EER) scholars develop skills and schema for reviewing scholarship, particularly in terms of developing constructive reviews that build expertise and advance knowledge. The Journal of Engineering Education (JEE) Mentored Reviewer Program constitutes the first phase of the EER PERT project. In this paper, we report on goals, structure and activities for the JEE Mentored Reviewer Program, pilot data from participants’ applications and exit surveys that will inform the EER PERT project in terms of participants’ developing skills and schema for reviewing and conducting EER, and provide initial suggestions from the training program that may benefit scholars new to EER.
  4. This paper describes a peer reviewer mentoring program called the Engineering Education Research Peer Review Training (EER PERT) project and serves as a pilot study on longitudinal effects on researchers’ productivity and the impact of their work, differences in these factors for those who review journal manuscripts and those who review grant proposals, and what aspects of peer review training (knowledge, resources, collaborations, etc.) participants actually carry forward in their own research. Overall, the project seeks to investigate how engineering education research (EER) scholars develop skills and schema for reviewing scholarship, particularly in terms of developing constructive reviews that build expertise and advance knowledge. The Journal of Engineering Education (JEE) Mentored Reviewer Program constitutes the first phase of the EER PERT project. In this paper, we report on goals, structure and activities for the JEE Mentored Reviewer Program, pilot data from participants’ applications and exit surveys that will inform the EER PERT project in terms of participants’ developing skills and schema for reviewing and conducting EER, and provide initial suggestions from the training program that may benefit scholars new to EER.
  5. Many university engineering programs require their students to complete a senior capstone experience to equip them with the knowledge and skills they need to succeed after graduation. Such capstone experiences typically integrate knowledge and skills learned cumulatively in the degree program, often engaging students in projects outside of the classroom. As part of an initiative to completely transform the civil engineering undergraduate program at Clemson University, a capstone-like course sequence is being incorporated into the curriculum during the sophomore year. Funded by a grant from the National Science Foundation’s Revolutionizing Engineering Departments (RED) program, this departmental transformation (referred to as the Arch initiative) is aiming to develop a culture of adaptation and a curriculum support for inclusive excellence and innovation to address the complex challenges faced by our society. Just as springers serve as the foundation stones of an arch, the new courses are called “Springers” because they serve as the foundations of the transformed curriculum. The goal of the Springer course sequence is to expose students to the “big picture” of civil engineering while developing student skills in professionalism, communication, and teamwork through real-world projects and hands-on activities. The expectation is that the Springer course sequence will allow facultymore »to better engage students at the beginning of their studies and help them understand how future courses contribute to the overall learning outcomes of a degree in civil engineering. The Springer course sequence is team-taught by faculty from both civil engineering and communication, and exposes students to all of the civil engineering subdisciplines. Through a project-based learning approach, Springer courses mimic capstone in that students work on a practical application of civil engineering concepts throughout the semester in a way that challenges students to incorporate tools that they will build on and use during their junior and senior years. In the 2019 spring semester, a pilot of the first of the Springer courses (Springer 1; n=11) introduced students to three civil engineering subdisciplines: construction management, hydrology, and transportation. The remaining subdisciplines will be covered in a follow-on Springer 2 pilot.. The project for Springer 1 involved designing a small parking lot for a church located adjacent to campus. Following initial instruction in civil engineering topics related to the project, students worked in teams to develop conceptual project designs. A design charrette allowed students to interact with different stakeholders to assess their conceptual designs and incorporate stakeholder input into their final designs. The purpose of this paper is to describe all aspects of the Springer 1 course, including course content, teaching methods, faculty resources, and the design and results of a Student Assessment of Learning Gains (SALG) survey to assess students’ learning outcomes. An overview of the Springer 2 course is also provided. The feedback from the SALG indicated positive attitudes towards course activities and content, and that students found interaction with project stakeholders during the design charrette especially beneficial. Challenges for full scale implementation of the Springer course sequence as a requirement in the transformed curriculum are also discussed.« less
  6. When examining factors affecting student academic success, it is important to consider how these factors interact with one another. Students’ affective attributes are complex in nature; thus, research methods and analyses should holistically examine how these attributes interact, not simply as a set of distinct constructs. Prior research into engineering students’ affective attributes, in which we used a validated survey to assess student motivation, identity, goal orientation, sense of belonging, career outcome expectations, grit and personality traits, demonstrated a positive correlation between perceptions of belongingness in engineering and time spent in the program. Other prior research has examined interactions between affective attributes, for example, engineering identity as a predictor of grit (consistency of interest). However, more work is needed to examine the complex relationships between sense of belonging, engineering identity, future career outcome expectations and motivation, particularly for students in an engineering program undergoing curricular change. This paper describes a confirmatory factor analysis and structural equation model to examine how engineering identity, career outcome expectations and time-oriented motivation (specifically, students’ future time perspectives, or FTP) impact their sense of belonging in engineering, with grit (consistency of interest) as a moderator of these relationships. To conduct these analyses, we used surveymore »data collected over two years from sophomores, juniors, and seniors enrolled in an undergraduate civil engineering program (2017-18, n=358; 2018-19, n=556). Based on descriptive statistics and initial statistical comparisons, we confirmed our prior findings that students’ sense of belonging at the course level increased with time in the program (from sophomore to senior year), and that engineering identity increased with time in the program as well. In addition, we observed that seniors had higher perceived instrumentality, a sub-construct of FTP indicating their perceived usefulness of their courses in reaching their future goals, than sophomores and juniors. We found that course belongingness and FTP have the strongest influence on belongingness compared to other affective attributes we assessed. When identity and motivation were factored in, career outcome expectations were not influential to engineering belongingness. Finally, we found that time-oriented motivation (FTP) was also a mediator of this relationship through its influence on grit (consistency of interest).« less
  7. As part of a National Science Foundation-funded initiative to completely transform the civil engineering undergraduate program at Clemson University, a capstone-like course sequence is being incorporated into the curriculum during the sophomore year. Clemson’s NSF Revolutionizing Engineering Departments (RED) program is called the Arch Initiative. Just as springers serve as the foundation stones of an arch, the new courses are called “Springers” because they serve as the foundations of the transformed curriculum. Through a project-based learning approach, Springer courses mimic the senior capstone experience by immersing students in a semester-long practical application of civil engineering, exposing them to concepts and tools in a way that challenges students to develop new knowledge that they will build on and use during their junior and senior years. In the 2019 spring semester, a pilot of the first Springer course introduced students to three civil engineering sub-disciplines: construction management, water resources, and transportation. The remaining sub-disciplines are covered in a follow-on Springer 2 pilot. The purpose of this paper is to describe all aspects of the Springer 1 course, including course content, teaching methods, faculty resources, and the design and results of a Student Assessment of Learning Gains (SALG) survey to assess students’ learningmore »outcomes. The feedback from the SALG indicated positive attitudes towards course activities and content. Challenges for full-scale implementation of the Springer course sequence as a requirement in the transformed curriculum are also discussed.« less