Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Emplacement of the Siberian Traps large igneous province (LIP) around 252 Ma coincided with the most profound environmental disruption of the past 500 million years. The enormous volume of the Siberian Traps, its ability to generate greenhouse gases and other volatiles, and a temporal coincidence with extinction all suggest a causal link. Patterns of marine and terrestrial extinction/recovery are consistent with environmental stresses potentially triggered by the Siberian Traps. However, the nature of causal links between the LIP and mass extinction remains enigmatic. Understanding the origins, anatomy, and forcing potential of the Siberian Traps LIP and the spatiotemporal patterns of resulting stresses represents a critical counterpart to high-resolution fossil and proxy records of Permian–Triassic environmental and biotic shifts. This review provides a summary of recent advances and key questions regarding the Siberian Traps in an effort to illuminate what combination of factors made the Siberian Traps a uniquely deadly LIP.more » « lessFree, publicly-accessible full text available May 30, 2026
- 
            Abstract The mainly deep-submarine Ontong Java Plateau (OJP) is the result of the largest outpouring of lava in the geologic record. Volcanic events of this magnitude can have dramatic environmental impacts due to volatile emissions. We report new S measurements in naturally glassy, olivine-hosted melt inclusions and pillow basalt glasses from the OJP. We combined these data with previous S measurements in OJP glasses to quantify S degassing in a suite of OJP glasses. Comparison with an S degassing model suggests OJP lavas that erupted at depths ~>1500 m did not degas S; OJP lavas that erupted at depths ~<1500 m degassed up to ~40% initial S, but these lavas likely made up a small fraction of OJP lavas. This result suggests that despite its large volume compared to continental large igneous provinces (LIPs), OJP lavas emitted less S, potentially contributing to its muted environmental impact. The OJP may provide a framework for the temporal evolution of S degassing at oceanic LIPs, with early eruptions at great water depths releasing limited to no S, and later eruptions at shallow water depths releasing larger, but still limited amounts of S. This framework may also have implications for continental LIP magmas, which may release significant amounts of CO2 but limited amounts of S during intrusive activity, with magmatic S emissions only becoming important during extrusive phases.more » « less
- 
            Volcanic eruptions impact climate, subtly and profoundly. The size of an eruption is only loosely correlated with the severity of its climate effects, which can include changes in surface temperature, ozone levels, stratospheric dynamics, precipitation, and ocean circulation. We review the processes—in magma chambers, eruption columns, and the oceans, biosphere, and atmosphere—that mediate the climate response to an eruption. A complex relationship between eruption size, style, duration, and the subsequent severity of the climate response emerges. We advocate for a new, consistent metric, the Volcano-Climate Index, to categorize climate response to eruptions independent of eruption properties and spanning the full range of volcanic activity, from brief explosive eruptions to long-lasting flood basalts. A consistent metric for categorizing the climate response to eruptions that differ in size, style, and duration is critical for establishing the relationshipbetween the severity and the frequency of such responses aiding hazard assessments, and furthering understanding of volcanic impacts on climate on timescales of years to millions of years. ▪ We review the processes driving the rocky relationship between eruption size and climate response and propose a Volcano-Climate Index. ▪ Volcanic eruptions perturb Earth's climate on a range of timescales, with key open questions regarding how processes in the magmatic system, eruption column, and atmosphere shape the climate response to volcanism. ▪ A Volcano-Climate Index will provide information on the volcano-climate severity-frequency distribution, analogous to earthquake hazards. ▪ Understanding of the frequency of specific levels of volcanic climate effects will aid hazard assessments, planning, and mitigation of societal impacts.more » « less
- 
            Abstract Bio-inspired, micro/nanotextured surfaces have a variety of applications including superhydrophobicity, self-cleaning, anti-icing, antibiofouling, and drag reduction. In this paper, a template-free and scalable roll coating process is studied for fabrication of micro/nanoscale topographies surfaces. These micro/nanoscale structures are generated with viscoelastic polymer nanocomposites and derived by controlling ribbing instabilities in forward roll coating. The relationship between process conditions and surface topography is studied in terms of shear rate, capillary number, and surface roughness parameters (e.g., Wenzel factor and the density of peaks). For a given shear rate, the sample roughness increased with a higher capillary number until a threshold point. Similarly, for a given capillary number, the roughness increased up to a threshold range associated with shear rate. A peak density coefficient (PDC) model is proposed to relate capillary number and shear rate to surface roughness. The optimum range of the shear rate and the capillary number was found to be 40–60 s−1 and 4.5 × 105–6 × 105, respectively. This resulted in a maximum Wenzel roughness factor of 1.91, a peak density of 3.94 × 104 (1/mm2), and a water contact angle (WCA) of 128 deg.more » « less
- 
            Visualizing optimization landscapes has resulted in many fundamental insights in numeric optimization, specifically regarding novel improvements to optimization techniques. However, visualizations of the objective that reinforcement learning optimizes (the "reward surface") have only ever been generated for a small number of narrow contexts. This work presents reward surfaces and related visualizations of 27 of the most widely used reinforcement learning environments in Gym for the first time. We also explore reward surfaces in the policy gradient direction and show for the first time that many popular reinforcement learning environments have frequent "cliffs" (sudden large drops in expected reward). We demonstrate that A2C often "dives off" these cliffs into low reward regions of the parameter space while PPO avoids them, confirming a popular intuition for PPO’s improved performance over previous methods. We additionally introduce a highly extensible library that allows researchers to easily generate these visualizations in the future. Our findings provide new intuition to explain the successes and failures of modern RL methods, and our visualizations concretely characterize several failure modes of reinforcement learning agents in novel ways.more » « less
- 
            null (Ed.)Caldera footprints and erupted magma volumes provide a unique constraint on vertical dimensions of upper crustal magma reservoirs that feed explosive silicic eruptions. Here we define a Vertical Separation (VS) ratio in which we compare the geometric vertical extent with the range of depths indicated petrologically by melt inclusion water and CO2 saturation pressures for fifteen caldera-forming eruptions spanning ∼10^0 km3 to ∼10^3 km3 in volume. We supplement melt inclusion saturation pressures with rhyolite-MELTS barometry and plagioclase-melt hygrometry to generate a petrologic image of magma reservoir architecture. We find that pre-eruptive upper crustal magma reservoirs range from contiguous bodies (where petrologic and geometric estimates match closely) to vertically dispersed structures. Vertically dispersed pre-eruptive reservoirs are more common among intermediate-volume eruptions than among the smallest and largest caldera-forming eruptions. We infer that the architecture of magma reservoirs tracks the thermomechanical evolution of large volcanic systems.more » « less
- 
            The Toba eruption ∼74,000 y ago was the largest volcanic eruption since the start of the Pleistocene and represents an important test case for understanding the effects of large explosive eruptions on climate and ecosystems. However, the magnitude and repercussions of climatic changes driven by the eruption are strongly debated. High-resolution paleoclimate and archaeological records from Africa find little evidence for the disruption of climate or human activity in the wake of the eruption in contrast with a controversial link with a bottleneck in human evolution and climate model simulations predicting strong volcanic cooling for up to a decade after a Toba-scale eruption. Here, we use a large ensemble of high-resolution Community Earth System Model (CESM1.3) simulations to reconcile climate model predictions with paleoclimate records, accounting for uncertainties in the magnitude of Toba sulfur emissions with high and low emission scenarios. We find a near-zero probability of annual mean surface temperature anomalies exceeding 4 °C in most of Africa in contrast with near 100% probabilities of cooling this severe in Asia and North America for the high sulfur emission case. The likelihood of strong decreases in precipitation is low in most of Africa. Therefore, even Toba sulfur release at the upper range of plausible estimates remains consistent with the muted response in Africa indicated by paleoclimate proxies. Our results provide a probabilistic view of the uneven patterns of volcanic climate disruption during a crucial interval in human evolution, with implications for understanding the range of environmental impacts from past and future supereruptions.more » « less
- 
            A 2 to 4 °C warming episode, known as the Latest Maastrichtian warming event (LMWE), preceded the Cretaceous–Paleogene boundary (KPB) mass extinction at 66.05 ± 0.08 Ma and has been linked with the onset of voluminous Deccan Traps volcanism. Here, we use direct measurements of melt-inclusion CO2concentrations and trace-element proxies for CO2to test the hypothesis that early Deccan magmatism triggered this warming interval. We report CO2concentrations from NanoSIMS and Raman spectroscopic analyses of melt-inclusion glass and vapor bubbles hosted in magnesian olivines from pre-KPB Deccan primitive basalts. Reconstructed melt-inclusion CO2concentrations range up to 0.23 to 1.2 wt% CO2for lavas from the Saurashtra Peninsula and the Thakurvadi Formation in the Western Ghats region. Trace-element proxies for CO2concentration (Ba and Nb) yield estimates of initial melt concentrations of 0.4 to 1.3 wt% CO2prior to degassing. Our data imply carbon saturation and degassing of Deccan magmas initiated at high pressures near the Moho or in the lower crust. Furthermore, we find that the earliest Deccan magmas were more CO2rich, which we hypothesize facilitated more efficient flushing and outgassing from intrusive magmas. Based on carbon cycle modeling and estimates of preserved lava volumes for pre-KPB lavas, we find that volcanic CO2outgassing alone remains insufficient to account for the magnitude of the observed latest Maastrichtian warming. However, accounting for intrusive outgassing can reconcile early carbon-rich Deccan Traps outgassing with observed changes in climate and atmospheric pCO2.more » « less
- 
            Abstract Periodic micro/nanoscale structures from nature have inspired the scientific community to adopt surface design for various applications, including superhydrophobic drag reduction. One primary concern of practical applications of such periodic microstructures remains the scalability of conventional microfabrication technologies. This study demonstrates a simple template‐free scalable manufacturing technique to fabricate periodic microstructures by controlling the ribbing defects in the forward roll coating. Viscoelastic composite coating materials are designed for roll‐coating using carbon nanotubes (CNT) and polydimethylsiloxane (PDMS), which helps achieve a controllable ribbing with a periodicity of 114–700 µm. Depending on the process parameters, the patterned microstructures transition from the linear alignment to a random structure. The periodic microstructure enables hydrophobicity as the water contact angles of the samples ranged from 128° to 158°. When towed in a static water pool, a model boat coated with the microstructure film shows 7%–8% faster speed than the boat with a flat PDMS film. The CNT addition shows both mechanical and electrical properties improvement. In a mechanical scratch test, the cohesive failure of the CNT‐PDMS film occurs in ≈90% higher force than bare PDMS. Moreover, the nonconductive bare PDMS shows sheet resistance of 747.84–22.66 Ω □−1with 0.5 to 2.5 wt% CNT inclusion.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available