We present follow-up spectroscopy and a detailed model atmosphere analysis of 29 wide double white dwarfs, including eight systems with a crystallized C/O core member. We use the state-of-the-art evolutionary models to constrain the physical parameters of each star, including the total age. Assuming that the members of wide binaries are coeval, any age difference between the binary members can be used to test the cooling physics for white dwarf stars, including potential delays due to crystallization and22Ne distillation. We use our control sample of 14 wide binaries with noncrystallized members to show that this method works well; the control sample shows an age difference of only ΔAge = −0.03 ± 0.15 Gyr between its members. For the eight crystallized C/O core systems we find a cooling anomaly of ΔAge =
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Gyr. Even though our results are consistent with a small additional cooling delay (∼1 Gyr) from22Ne distillation and other neutron-rich impurities, the large uncertainties make this result not statistically significant. Nevertheless, we rule out cooling delays longer than 3.6 Gyr at the 99.7% (3σ ) confidence level for 0.6–0.9M ⊙white dwarfs. Further progress requires larger samples of wide binaries with crystallized massive white dwarf members. We provide a list of subgiant + white dwarf binaries that could be used for this purpose in the future. -
Abstract We present a detailed model atmosphere analysis of massive white dwarfs with
M > 0.9M ⊙andT eff≥ 11,000 K in the Montreal White Dwarf Database 100 pc sample and the Pan-STARRS footprint. We obtained follow-up optical spectroscopy of 109 objects with no previous spectral classification in the literature. Our spectroscopic follow-up is now complete for all 204 objects in the sample. We find 118 normal DA white dwarfs, including 45 massive DAs near the ZZ Ceti instability strip. There are no normal massive DBs: the six DBs in the sample are strongly magnetic and/or rapidly rotating. There are 20 massive DQ white dwarfs in our sample, and all are found in the crystallization sequence. In addition, 66 targets are magnetic (32% of the sample). We use magnetic white dwarf atmosphere models to constrain the field strength and geometry using offset dipole models. We also use magnetism, kinematics, and rotation measurements to constrain the fraction of merger remnant candidates among this population. The merger fraction of this sample increases from 25% for 0.9–1M ⊙white dwarfs to 49% for 1.2–1.3M ⊙. However, this fraction is as high as % for 1.1–1.2M ⊙white dwarfs. Previous works have demonstrated that 5%–9% of high-mass white dwarfs stop cooling for ∼8 Gyr due to the22Ne distillation process, which leads to an overdensity of Q-branch stars in the solar neighborhood. We demonstrate that the overabundance of the merger remnant candidates in our sample is likely due to the same process. -
ABSTRACT Recent photometric observations of massive stars have identified a low-frequency power excess which appears as stochastic low-frequency variability in light-curve observations. We present the oscillation properties of high-resolution hydrodynamic simulations of a $25\,\,{\rm{M}_\odot }$ star performed with the PPMstar code. The model star has a convective core mass of $\approx 12\,\,{\rm{M}_\odot }$ and approximately half of the envelope simulated. From this simulation, we extract light curves from several directions, average them over each hemisphere, and process them as if they were real photometric observations. We show how core convection excites waves with a similar frequency as the convective time-scale in addition to significant power across a forest of low and high angular degree l modes. We find that the coherence of these modes is relatively low as a result of their stochastic excitation by core convection, with lifetimes of the order of 10s of days. Thanks to the still significant power at higher l and this relatively low coherence, we find that integrating over a hemisphere produces a power spectrum that still contains measurable power up to the Brunt–Väisälä frequency. These power spectra extracted from the stable envelope are qualitatively similar to observations, with the same order of magnitude yet lower characteristic frequency. This work further shows the potential of long-duration, high-resolution hydrodynamic simulations for connecting asteroseismic observations to the structure and dynamics of core convection and the convective boundary.
-
ABSTRACT Over a quarter of white dwarfs have photospheric metal pollution, which is evidence for recent accretion of exoplanetary material. While a wide range of mechanisms have been proposed to account for this pollution, there are currently few observational constraints to differentiate between them. To investigate the driving mechanism, we observe a sample of polluted and non-polluted white dwarfs in wide binary systems with main-sequence stars. Using the companion stars’ metallicities as a proxy for the white dwarfs’ primordial metallicities, we compare the metallicities of polluted and non-polluted systems. Because there is a well-known correlation between giant planet occurrence and higher metallicity (with a stronger correlation for close-in and eccentric planets), these metallicity distributions can be used to probe the role of gas giants in white dwarf accretion. We find that the metallicity distributions of polluted and non-polluted systems are consistent with the hypothesis that both samples have the same underlying metallicity distribution. However, we note that this result is likely biased by several selection effects. Additionally, we find no significant trend between white dwarf accretion rates and metallicity. These findings suggest that giant planets are not the dominant cause of white dwarf accretion events in binary systems.
-
Abstract Four years after the discovery of a unique DAQ white dwarf with a hydrogen-dominated and carbon-rich atmosphere, we report the discovery of four new DAQ white dwarfs, including two that were not recognized properly in the literature. We find all five DAQs in a relatively narrow mass and temperature range of
M = 1.14–1.19M ⊙andT eff= 13,000–17,000 K. In addition, at least two show photometric variations due to rapid rotation with ≈10 minute periods. All five are also kinematically old, but appear photometrically young, with estimated cooling ages of about 1 Gyr based on standard cooling tracks, and their masses are roughly twice the mass of the most common white dwarfs in the solar neighborhood. These characteristics are smoking gun signatures of white dwarf merger remnants. Comparing the DAQ sample with warm DQ white dwarfs, we demonstrate that there is a range of hydrogen abundances among the warm DQ population and that the distinction between DAQ and warm DQ white dwarfs is superficial. We discuss the potential evolutionary channels for the emergence of the DAQ subclass, suggesting that DAQ white dwarfs are trapped on the crystallization sequence and may remain there for a significant fraction of the Hubble time. -
ABSTRACT The inner structure of core helium burning (CHeB) stars remains uncertain due to the yet unknown nature of mixing at the boundary of their cores. Large convective cores beyond a bare Schwarzschild model are favoured both from theoretical arguments and from asteroseismological constraints. However, the exact nature of this extra mixing, and in particular the possible presence of semiconvective layers, is still debated. In this work, we approach this problem through a new avenue by performing the first full-sphere 3D hydrodynamics simulations of the interiors of CHeB stars. We use the ppmstar explicit gas dynamics code to simulate the inner 0.45$\, {\rm M}_{\odot }$ of a 3 M⊙ CHeB star. Simulations are performed using different Cartesian grid resolutions (7683, 11523, and 17283) and heating rates. We use two different initial states, one based on mesas's predictive mixing scheme (which significantly extends the core beyond the Schwarzschild boundary) and one based on the convective premixing approach (which exhibits a semiconvective interface). The general behaviour of the flow in the convective core and in the stable envelope (where internal gravity waves are observed) is consistent with our recent simulations of core convection in massive main-sequence stars, and so are the various luminosity scaling relations. The semiconvective layers are dominated by strong internal gravity waves that do not produce measurable species mixing, but overshooting motions from the convective core gradually homogenize the semiconvective interface. This process can possibly completely erase the semiconvective layers, which would imply that CHeB stars do not harbour a semiconvection zone.
-
Abstract Gaia's exquisite parallax measurements allowed for the discovery and characterization of the Q branch in the Hertzsprung–Russell diagram, where massive C/O white dwarfs (WDs) pause their dimming due to energy released during crystallization. Interestingly, the fraction of old stars on the Q branch is significantly higher than in the population of WDs that will become Q branch stars or that were Q branch stars in the past. From this, Cheng et al. inferred that ∼6% of WDs passing through the Q branch experience a much longer cooling delay than that of standard crystallizing WDs. Previous attempts to explain this cooling anomaly have invoked mechanisms involving supersolar initial metallicities. In this paper, we describe a novel scenario in which a standard composition WD merges with a subgiant star. The evolution of the resulting merger remnant leads to the creation of a large amount of26Mg, which, along with the existing22Ne, undergoes a distillation process that can release enough energy to explain the Q branch cooling problem without the need for atypical initial abundances. The anomalously high number of old stars on the Q branch may thus be evidence that mass transfer from subgiants to WDs leads to unstable mergers.
-
ABSTRACT The convective dredge-up of carbon from the interiors of hydrogen-deficient white dwarfs has long been invoked to explain the presence of carbon absorption features in the spectra of cool DQ stars ($T_{\rm eff} \lt 10\,000\,$K). It has been hypothesized that this transport process is not limited to DQ white dwarfs and also operates, albeit less efficiently, in non-DQ hydrogen-deficient white dwarfs within the same temperature range. This non-DQ population is predominantly composed of DC white dwarfs, which exhibit featureless optical spectra. However, no direct observational evidence of ubiquitous carbon pollution in DC stars has thus far been uncovered. In this Letter, we analyse data from the Galaxy Evolution Explorer to reveal the photometric signature of ultraviolet carbon lines in most DC white dwarfs in the $8500\, {\rm K} \le T_{\rm eff} \le 10\,500\,$K temperature range. Our results show that the vast majority of hydrogen-deficient white dwarfs experience carbon dredge-up at some point in their evolution.
-
ABSTRACT The Gaia colour–magnitude diagram reveals a striking separation between hydrogen-atmosphere white dwarfs and their helium-atmosphere counterparts throughout a significant portion of the white dwarf cooling track. However, pure-helium atmospheres have Gaia magnitudes that are too close to the pure-hydrogen case to explain this bifurcation. To reproduce the observed split in the cooling sequence, it has been shown that trace amounts of hydrogen and/or metals must be present in the helium-dominated atmospheres of hydrogen-deficient white dwarfs. Yet, a complete explanation of the Gaia bifurcation that takes into account known constraints on the spectral evolution of white dwarfs has thus far not been proposed. In this work, we attempt to provide such a holistic explanation by performing population synthesis simulations coupled with state-of-the-art model atmospheres and evolutionary calculations that account for element transport in the envelopes of white dwarfs. By relying on empirically grounded assumptions, these simulations successfully reproduce the bifurcation. We show that the convective dredge-up of optically undetectable traces of carbon from the deep interior is crucial to account for the observations. Neither the convective dilution/mixing of residual hydrogen nor the accretion of hydrogen or metals can be the dominant drivers of the bifurcation. Finally, we emphasize the importance of improving theoretical models for the average ionization level of carbon in warm dense helium, which governs the shape of the diffusive tail of carbon and in turn the predicted amount of dredged-up carbon.
-
Abstract When white dwarfs freeze, the plasma mixtures inside them undergo separation processes that can produce radical changes in the composition profile of the star. The abundance of neutron-rich elements, such as22Ne or56Fe, determines whether or not the first crystals are more or less dense than the surrounding fluid and thus whether they sink or float. These processes have now been studied for C–O–Ne and C–O–Fe mixtures, finding that distillation and precipitation processes are possible in white dwarfs. In this work, we calculate the phase diagram of more complicated O–Ne–Fe mixtures and make predictions for the internal structure of the separated white dwarf. There are two possible outcomes determined by a complicated interplay between the Ne abundance, the22Ne fraction, and the56Fe abundance. Either Fe distills to form an inner core because the first O–Ne solids are buoyant, or an O–Ne inner core forms and Fe accumulates in the liquid until Fe distillation begins and forms an Fe shell. In the case of an Fe shell, a Rayleigh–Taylor instability may arise and overturn the core. In either case, Fe distillation may only produce a cooling delay of order 0.1 Gyr, as these processes occur early at high white dwarf luminosities. Fe inner cores and shells may be detectable through asteroseismology and could enhance the yield of neutron-rich elements such as55Mn and58Ni in supernovae.