Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The unimolecular isomerisation of the prompt propargyl + propargyl “head-to-head” adduct, 1,5-hexadiyne, to fulvene and benzene by the 3,4-dimethylenecyclobut-1-ene (DMCB) intermediate (all C 6 H 6 ) was studied in the high-pressure limit by threshold photoelectron (TPE) spectroscopy. TPE spectra (TPES) were recorded with photoelectron photoion coincidence spectroscopy using synchrotron vacuum ultraviolet radiation. Reference TPES, obtained using pure compounds or judiciously extracted from the pyrolysis data, served as basis functions for pyrolysis quantification. From these spectra, we measured a revised fulvene ionisation energy of 8.401 ± 0.005 eV. Temperature-dependent pyrolysis spectra were decomposed using these basis functions. The basis function coefficients were converted to product yields relying on assumed integral threshold photoionisation cross sections obtained by three, partially mutually exclusive sets of assumptions. Thus, the product yields of DMCB, fulvene, and benzene have been established, as well as their uncertainty. The derived mole fractions are consistent with modeling based on the C 6 H 6 potential and RRKM master equation model of Miller and Klippenstein [ J. Phys. Chem. A , 2003, 107 , 7783]. Although our results are fully consistent with the parallel isomerisation pathways to benzene and fulvene found by Miller and Klippenstein, we observe the onset ofmore »Free, publicly-accessible full text available October 21, 2023
-
The valence photoionization of light and deuterated methanol dimers was studied by imaging photoelectron photoion coincidence spectroscopy in the 10.00–10.35 eV photon energy range. Methanol clusters were generated in a rich methanol beam in nitrogen after expansion into vacuum. They generally photoionize dissociatively to protonated methanol cluster cations, (CH 3 OH) n H + . However, the stable dimer parent ion (CH 3 OH) 2 + is readily detected below the dissociation threshold to yield the dominant CH 3 OH 2 + fragment ion. In addition to protonated methanol, we could also detect the water- and methyl-loss fragment ions of the methanol dimer cation for the first time. These newly revealed fragmentation channels are slow and cannot compete with protonated methanol cation formation at higher internal energies. In fact, the water- and methyl-loss fragment ions appear together and disappear at a ca. 150 meV higher energy in the breakdown diagram. Experiments with selectively deuterated methanol samples showed H scrambling involving two hydroxyl and one methyl hydrogens prior to protonated methanol formation. These insights guided the potential energy surface exploration to rationalize the dissociative photoionization mechanism. The potential energy surface was further validated by a statistical model including isotope effects tomore »