Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 12, 2026
-
Free, publicly-accessible full text available January 12, 2026
-
Free, publicly-accessible full text available July 8, 2025
-
Free, publicly-accessible full text available July 8, 2025
-
Guruswami, Venkatesan (Ed.)The aspect ratio of a (positively) weighted graph G is the ratio of its maximum edge weight to its minimum edge weight. Aspect ratio commonly arises as a complexity measure in graph algorithms, especially related to the computation of shortest paths. Popular paradigms are to interpolate between the settings of weighted and unweighted input graphs by incurring a dependence on aspect ratio, or by simply restricting attention to input graphs of low aspect ratio. This paper studies the effects of these paradigms, investigating whether graphs of low aspect ratio have more structured shortest paths than graphs in general. In particular, we raise the question of whether one can generally take a graph of large aspect ratio and reweight its edges, to obtain a graph with bounded aspect ratio while preserving the structure of its shortest paths. Our findings are: - Every weighted DAG on n nodes has a shortest-paths preserving graph of aspect ratio O(n). A simple lower bound shows that this is tight. - The previous result does not extend to general directed or undirected graphs; in fact, the answer turns out to be exponential in these settings. In particular, we construct directed and undirected n-node graphs for which any shortest-paths preserving graph has aspect ratio 2^{Ω(n)}. We also consider the approximate version of this problem, where the goal is for shortest paths in H to correspond to approximate shortest paths in G. We show that our exponential lower bounds extend even to this setting. We also show that in a closely related model, where approximate shortest paths in H must also correspond to approximate shortest paths in G, even DAGs require exponential aspect ratio.more » « less
-
Bringmann, Karl ; Grohe, Martin ; Puppis, Gabriele ; Svensson, Ola (Ed.)We construct n-node graphs on which any O(n)-size spanner has additive error at least +Ω(n^{3/17}), improving on the previous best lower bound of Ω(n^{1/7}) [Bodwin-Hoppenworth FOCS '22]. Our construction completes the first two steps of a particular three-step research program, introduced in prior work and overviewed here, aimed at producing tight bounds for the problem by aligning aspects of the upper and lower bound constructions. More specifically, we develop techniques that enable the use of inner graphs in the lower bound framework whose technical properties are provably tight with the corresponding assumptions made in the upper bounds. As an additional application of our techniques, we improve the corresponding lower bound for O(n)-size additive emulators to +Ω(n^{1/14}).more » « less
-
Bringmann, Karl ; Grohe, Martin ; Puppis, Gabriele ; Svensson, Ola (Ed.)The hereditary discrepancy of a set system is a quantitative measure of the pseudorandom properties of the system. Roughly speaking, hereditary discrepancy measures how well one can 2-color the elements of the system so that each set contains approximately the same number of elements of each color. Hereditary discrepancy has numerous applications in computational geometry, communication complexity and derandomization. More recently, the hereditary discrepancy of the set system of shortest paths has found applications in differential privacy [Chen et al. SODA 23]. The contribution of this paper is to improve the upper and lower bounds on the hereditary discrepancy of set systems of unique shortest paths in graphs. In particular, we show that any system of unique shortest paths in an undirected weighted graph has hereditary discrepancy O(n^{1/4}), and we construct lower bound examples demonstrating that this bound is tight up to polylog n factors. Our lower bounds hold even for planar graphs and bipartite graphs, and improve a previous lower bound of Ω(n^{1/6}) obtained by applying the trace bound of Chazelle and Lvov [SoCG'00] to a classical point-line system of Erdős. As applications, we improve the lower bound on the additive error for differentially-private all pairs shortest distances from Ω(n^{1/6}) [Chen et al. SODA 23] to Ω̃(n^{1/4}), and we improve the lower bound on additive error for the differentially-private all sets range queries problem to Ω̃(n^{1/4}), which is tight up to polylog n factors [Deng et al. WADS 23].more » « less
-
A t-emulator of a graph G is a graph H that approximates its pairwise shortest path distances up to multiplicative t error. We study fault tolerant t-emulators, under the model recently introduced by Bodwin, Dinitz, and Nazari [ITCS 2022] for vertex failures. In this paper we consider the version for edge failures, and show that they exhibit surprisingly different behavior. In particular, our main result is that, for (2k-1)-emulators with k odd, we can tolerate a polynomial number of edge faults for free. For example: for any n-node input graph, we construct a 5-emulator (k = 3) on O(n^{4/3}) edges that is robust to f = O(n^{2/9}) edge faults. It is well known that Ω(n^{4/3}) edges are necessary even if the 5-emulator does not need to tolerate any faults. Thus we pay no extra cost in the size to gain this fault tolerance. We leave open the precise range of free fault tolerance for odd k, and whether a similar phenomenon can be proved for even k.more » « less