Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 23, 2025
-
null (Ed.)We discuss computational and qualitative aspects of the fractional Plateau and the prescribed fractional mean curvature problems on bounded domains subject to exterior data being a subgraph. We recast these problems in terms of energy minimization, and we discretize the latter with piecewise linear finite elements. For the computation of the discrete solutions, we propose and study a gradient flow and a Newton scheme, and we quantify the effect of Dirichlet data truncation. We also present a wide variety of numerical experiments that illustrate qualitative and quantitative features of fractional minimal graphs and the associated discrete problems.more » « less
-
We obtain regularity results in weighted Sobolev spaces for the solution of the obstacle problem for the integral fractional Laplacian [Formula: see text] in a Lipschitz bounded domain [Formula: see text] satisfying the exterior ball condition. The weight is a power of the distance to the boundary [Formula: see text] of [Formula: see text] that accounts for the singular boundary behavior of the solution for any [Formula: see text]. These bounds then serve us as a guide in the design and analysis of a finite element scheme over graded meshes for any dimension [Formula: see text], which is optimal for [Formula: see text].more » « less