Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Over a local ring , the theory of cohomological support varieties attaches to any bounded complex of finitely generated -modules an algebraic variety that encodes homological properties of . We give lower bounds for the dimension of in terms of classical invariants of . In particular, when is Cohen–Macaulay and not complete intersection we find that there are always varieties that cannot be realized as the cohomological support of any complex. When has finite projective dimension, we also give an upper bound for in terms of the dimension of the radical of the homotopy Lie algebra of . This leads to an improvement of a bound due to Avramov, Buchweitz, Iyengar, and Miller on the Loewy lengths of finite free complexes, and it recovers a result of Avramov and Halperin on the homotopy Lie algebra of . Finally, we completely classify the varieties that can occur as the cohomological support of a complex over a Golod ring.more » « less
-
Abstract Building on work of Gerstenhaber, we show that the space of integrable derivations on an Artin algebra forms a Lie algebra, and a restricted Lie algebra if contains a field of characteristic . We deduce that the space of integrable classes in forms a (restricted) Lie algebra that is invariant under derived equivalences, and under stable equivalences of Morita type between self‐injective algebras. We also provide negative answers to questions about integrable derivations posed by Linckelmann and by Farkas, Geiss and Marcos. Along the way, we compute the first Hochschild cohomology of the group algebra of any symmetric group.more » « less
-
Abstract A simple polytopePis calledB-rigidif its combinatorial type is determined by the cohomology ring of the moment-angle manifold$$\mathcal {Z}_P$$overP. We show that any tensor product decomposition of this cohomology ring is geometrically realized by a product decomposition of the moment-angle manifold up to equivariant diffeomorphism. As an application, we find thatB-rigid polytopes are closed under products, generalizing some recent results in the toric topology literature. Algebraically, our proof establishes that the Koszul homology of a Gorenstein Stanley–Reisner ring admits a nontrivial tensor product decomposition if and only if the underlying simplicial complex decomposes as a join of full subcomplexes.more » « less
-
Abstract We investigate maximal tori in the Hochschild cohomology Lie algebra $${\operatorname {HH}}^1(A)$$ of a finite dimensional algebra $$A$$, and their connection with the fundamental groups associated to presentations of $$A$$. We prove that every maximal torus in $${\operatorname {HH}}^1(A)$$ arises as the dual of some fundamental group of $$A$$, extending the work by Farkas, Green, and Marcos; de la Peña and Saorín; and Le Meur. Combining this with known invariance results for Hochschild cohomology, we deduce that (in rough terms) the largest rank of a fundamental group of $$A$$ is a derived invariant quantity, and among self-injective algebras, an invariant under stable equivalences of Morita type. Using this we prove that there are only finitely many monomial algebras in any derived equivalence class of finite dimensional algebras; hitherto this was known only for very restricted classes of monomial algebras.more » « less
-
This work concerns a map φ : R → S \varphi \colon R\to S of commutative noetherian rings, locally of finite flat dimension. It is proved that the André-Quillen homology functors are rigid, namely, if D n ( S / R ; − ) = 0 \mathrm {D}_n(S/R;-)=0 for some n ≥ 1 n\ge 1 , then D i ( S / R ; − ) = 0 \mathrm {D}_i(S/R;-)=0 for all i ≥ 2 i\ge 2 and φ {\varphi } is locally complete intersection. This extends Avramov’s theorem that draws the same conclusion assuming D n ( S / R ; − ) \mathrm {D}_n(S/R;-) vanishes for all n ≫ 0 n\gg 0 , confirming a conjecture of Quillen. The rigidity of André-Quillen functors is deduced from a more general result about the higher cotangent modules which answers a question raised by Avramov and Herzog, and subsumes a conjecture of Vasconcelos that was proved recently by the first author. The new insight leading to these results concerns the equivariance of a map from André-Quillen cohomology to Hochschild cohomology defined using the universal Atiyah class of φ \varphi .more » « less
-
Abstract A local ring R is regular if and only if every finitely generated R -module has finite projective dimension. Moreover, the residue field k is a test module: R is regular if and only if k has finite projective dimension. This characterization can be extended to the bounded derived category $$\mathsf {D}^{\mathsf f}(R)$$ , which contains only small objects if and only if R is regular. Recent results of Pollitz, completing work initiated by Dwyer–Greenlees–Iyengar, yield an analogous characterization for complete intersections: R is a complete intersection if and only if every object in $$\mathsf {D}^{\mathsf f}(R)$$ is proxy small. In this paper, we study a return to the world of R -modules, and search for finitely generated R -modules that are not proxy small whenever R is not a complete intersection. We give an algorithm to construct such modules in certain settings, including over equipresented rings and Stanley–Reisner rings.more » « less
-
null (Ed.)Abstract It is proved that a map $${\varphi }\colon R\to S$$ of commutative Noetherian rings that is essentially of finite type and flat is locally complete intersection if and only if $$S$$ is proxy small as a bimodule. This means that the thick subcategory generated by $$S$$ as a module over the enveloping algebra $$S\otimes _RS$$ contains a perfect complex supported fully on the diagonal ideal. This is in the spirit of the classical result that $${\varphi }$$ is smooth if and only if $$S$$ is small as a bimodule; that is to say, it is itself equivalent to a perfect complex. The geometric analogue, dealing with maps between schemes, is also established. Applications include simpler proofs of factorization theorems for locally complete intersection maps.more » « less