skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Brown, Gavin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a fast, differentially private algorithm for high-dimensional covariance-aware mean estimation with nearly optimal sample complexity. Only exponential-time estimators were previously known to achieve this guarantee. Given n samples from a (sub-)Gaussian distribution with unknown mean μ and covariance Σ, our (ε,δ)-differentially private estimator produces μ~ such that ∥μ−μ~∥Σ≤α as long as n≳dα2+dlog1/δ√αε+dlog1/δε. The Mahalanobis error metric ∥μ−μ^∥Σ measures the distance between μ^ and μ relative to Σ; it characterizes the error of the sample mean. Our algorithm runs in time O~(ndω−1+nd/ε), where ω<2.38 is the matrix multiplication exponent. We adapt an exponential-time approach of Brown, Gaboardi, Smith, Ullman, and Zakynthinou (2021), giving efficient variants of stable mean and covariance estimation subroutines that also improve the sample complexity to the nearly optimal bound above. Our stable covariance estimator can be turned to private covariance estimation for unrestricted subgaussian distributions. With n≳d3/2 samples, our estimate is accurate in spectral norm. This is the first such algorithm using n=o(d2) samples, answering an open question posed by Alabi et al. (2022). With n≳d2 samples, our estimate is accurate in Frobenius norm. This leads to a fast, nearly optimal algorithm for private learning of unrestricted Gaussian distributions in TV distance. Duchi, Haque, and Kuditipudi (2023) obtained similar results independently and concurrently. 
    more » « less
    Free, publicly-accessible full text available July 15, 2024
  2. Gergely Neu and Lorenzo Rosasco (Ed.)