Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Negative interactions between people and wildlife pose a significant challenge to their coexistence. Past research on human–wildlife interactions has largely focused on conflicts involving carnivores in rural areas. Additional research is needed in urban areas to examine the full array of negative and positive interactions between people and wildlife. In this study, we have conducted interviews in the desert metropolis of Phoenix, Arizona (USA), to explore residents’ everyday interactions with wildlife where they live. Our multifaceted approach examines interactions involving physical contact and observational experiences, as well as associated attitudinal and behavioral responses and actions toward wildlife. Overall, the qualitative analysis of residents’ narratives identified two distinct groups: people who are indifferent toward wildlife where they live, and those who appreciate and steward wildlife. Instead of revealing conflicts and negative interactions toward wildlife, our findings underscore the positive interactions that can foster human wellbeing in urban areas. The holistic approach presented herein can advance knowledge and the management of coexistence, which involves not only managing conflicts but also tolerance, acceptance, and stewardship. Understanding diverse human–wildlife interactions and managing coexistence can advance both wildlife conservation and human wellbeing in cities.more » « less
-
De Marco Júnior, Paulo (Ed.)Urbanization is one of the most widespread and extreme examples of habitat alteration. As humans dominate landscapes, they introduce novel elements into environments, including artificial light, noise pollution, and anthropogenic food sources. One understudied form of anthropogenic food is refuse from restaurants, which can alter wildlife populations and, in turn, entire wildlife communities by providing a novel and stable food source. Using data from the Maricopa Association of Governments and the Central Arizona-Phoenix Long Term Ecological Research (CAP LTER) project, we investigated whether and how the distribution of restaurants influences avian communities. The research aimed to identify restaurants, and thus the associated food they may provide, as the driver of potential patterns by controlling for other influences of urbanization, including land cover and the total number of businesses. Using generalized linear mixed models, we tested whether the number of restaurants within 1 km of bird monitoring locations predict avian community richness and abundance and individual species abundance and occurrence patterns. Results indicate that restaurants may decrease avian species diversity and increase overall abundance. Additionally, restaurants may be a significant predictor of the overall abundance of urban-exploiting species, including rock pigeon ( Columba livia ), mourning dove (Zenaida macroura) , and Inca dove ( Columbina Inca ). Understanding how birds utilize anthropogenic food sources can inform possible conservation or wildlife management practices. As this study highlights only correlations, we suggest further experimental work to address the physiological ramifications of consuming anthropogenic foods provided by restaurants and studies to quantify how frequently anthropogenic food sources are used compared to naturally occurring sources.more » « less
-
Mosquitoes and the pathogens they carry are increasingly common in urban areas throughout the globe. With urban landscapes, the need to manage mosquitoes is driven by the health risks and nuisance complaints associated with mosquitoes. Controlling the number of mosquitoes may reduce the overall risk of disease transmission but may not reduce nuisance complaints. This study focuses on Maricopa County in Arizona, USA, to investigate the relationship between mosquito abundance and landscape-level and sociodemographic factors on resident perceptions of mosquitoes. We used boosted regression trees to compare how mosquito abundance, collected from Maricopa Vector Control, and landscape factors and social factors, assessed through the Phoenix Area Social Survey, influence survey respondents’ reporting of mosquitoes as a problem. Results show that the landscape and sociodemographic features play a prominent role in how individuals perceive mosquitoes as a problem; specifically, respondents’ perception of their local landscape as messy and the distance to landscape features such as wetlands have more substantial roles in shaping perceptions. This work can highlight how potential mosquito and non-mosquito-related communications and management efforts may improve residents’ satisfaction with mosquito control or other wildlife management efforts, which can help inform best practices for vector control agencies.more » « less
-
null (Ed.)Biological invasions are inextricably linked to how people collect, move, interact with and perceive non-native species. However, invasion frameworks generally do not consider reciprocal interactions between non-native species and people. Non-native species can shape human actions via beneficial or detrimental ecological and socioeconomic effects and people, in turn, shape invasions through their movements, behaviour and how they respond to the collection, transport, introduction and spread of non-natives. The feedbacks that stem from this ‘coupled human and natural system’ (CHANS) could therefore play a key role in mitigating (i.e. negative feedback loops) or exacerbating (i.e. positive feedback loops) ongoing and future invasions. We posit that the invasion process could be subdivided into three CHANS that span from the source region from which non-natives originate to the recipient region in which they establish and spread. We also provide specific examples of feedback loops that occur within each CHANS that have either reduced or facilitated new introductions and spread of established non-native species. In so doing, we add to exisiting invasion frameworks to generate new hypotheses about human-based drivers of biological invasions and further efforts to determine how ecological outcomes feed back into human actions.more » « less
-
Abstract Local-scale studies have shown that an overabundance of Cervidae species (deer, elk, moose) impacts forest bird communities. Through meta-analysis, we provide a generalized estimate of the overall direction and magnitude of the indirect effects overabundant cervids have on avian species. We conducted 2 distinct meta-analyses that synthesized data on 130 bird species collected from 17 publications. These analyses compared bird species’ population abundance and/or species richness at sites with overabundant cervids to sites with lower cervid abundance or without cervids. We evaluated whether the impacts of overabundant cervids are generally in the same direction (positive, negative) across avian species and locations and if effects vary in magnitude according to avian nesting location and foraging habitat. We found that where cervids were overabundant, there was a significant decrease in mean bird population abundance and species richness. Species that nest in trees, shrubs, and on the ground showed the largest decreases in abundance, as did species whose primary habitat is forest and open woodland and species that are primarily insectivores or omnivores. We did not find significant decreases in abundance for avian species that nest in cavities, whose primary habitat is grassland or scrub, nor for species that mainly eat seeds. Our results indicate that overabundant cervids, likely through their direct effects on vegetation and indirect effects on insects and forest birds, negatively impact individual bird populations and decrease overall avian species richness.more » « less