Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Tikhonov regularization is commonly used in the solution of linear discrete ill-posed problems. It is known that iterated Tikhonov regularization often produces approximate solutions of higher quality than (standard) Tikhonov regularization. This paper discusses iterated Tikhonov regularization for large-scale problems with a general regularization matrix. Specifically, the original problem is reduced to small size by application of a fairly small number of steps of the Arnoldi or Golub-Kahan processes, and iterated Tikhonov is applied to the reduced problem. The regularization parameter is determined by using an extension of a technique first described by Donatelli and Hanke for quite special coefficient matrices. Convergence of the method is established and computed examples illustrate its performance.more » « lessFree, publicly-accessible full text available May 6, 2026
-
ABSTRACT Several iterative soft‐thresholding algorithms, such as FISTA, have been proposed in the literature for solving regularized linear discrete inverse problems that arise in various applications in science and engineering. These algorithms are easy to implement, but their rates of convergence may be slow. This paper describes novel approaches to reduce the computations required for each iteration by using Krylov subspace techniques. Specifically, we propose to impose sparsity on the coefficients in the representation of the computed solution in terms of a Krylov subspace basis. Several numerical examples from image deblurring and computerized tomography are used to illustrate the efficiency and accuracy of the proposed methods.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Free, publicly-accessible full text available January 10, 2026
-
null (Ed.)Abstract Discrete ill-posed inverse problems arise in various areas of science and engineering. The presence of noise in the data often makes it difficult to compute an accurate approximate solution. To reduce the sensitivity of the computed solution to the noise, one replaces the original problem by a nearby well-posed minimization problem, whose solution is less sensitive to the noise in the data than the solution of the original problem. This replacement is known as regularization. We consider the situation when the minimization problem consists of a fidelity term, that is defined in terms of a p -norm, and a regularization term, that is defined in terms of a q -norm. We allow 0 < p , q ≤ 2. The relative importance of the fidelity and regularization terms is determined by a regularization parameter. This paper develops an automatic strategy for determining the regularization parameter for these minimization problems. The proposed approach is based on a new application of generalized cross validation. Computed examples illustrate the performance of the method proposed.more » « less
-
Abstract Bregman-type iterative methods have received considerable attention in recent years due to their ease of implementation and the high quality of the computed solutions they deliver. However, these iterative methods may require a large number of iterations and this reduces their usefulness. This paper develops a computationally attractive linearized Bregman algorithm by projecting the problem to be solved into an appropriately chosen low-dimensional Krylov subspace. The projection reduces the computational effort required for each iteration. A variant of this solution method, in which nonnegativity of each computed iterate is imposed, also is described. Extensive numerical examples illustrate the performance of the proposed methods.more » « less
-
null (Ed.)Abstract Randomized methods can be competitive for the solution of problems with a large matrix of low rank. They also have been applied successfully to the solution of large-scale linear discrete ill-posed problems by Tikhonov regularization (Xiang and Zou in Inverse Probl 29:085008, 2013). This entails the computation of an approximation of a partial singular value decomposition of a large matrix A that is of numerical low rank. The present paper compares a randomized method to a Krylov subspace method based on Golub–Kahan bidiagonalization with respect to accuracy and computing time and discusses characteristics of linear discrete ill-posed problems that make them well suited for solution by a randomized method.more » « less