skip to main content


Search for: All records

Creators/Authors contains: "Burke, Jamison"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    AT 2020mot is a typical UV/optical tidal disruption event (TDE) with no radio or X-ray signatures in a quiescent host. We find ani-band excess and rebrightening along the decline of the light curve which could be due to two consecutive dust echoes from the TDE. We model our observations following van Velzen et al. and find that the near-infrared light curve can be explained by concentric rings of thin dust within ∼0.1 pc of a ∼6 × 106Msupermassive black hole (SMBH), among the smallest scales at which dust has been inferred near SMBHs. We find dust covering factors of orderfc≤ 2%, much lower than found for dusty tori of active galactic nuclei. These results highlight the potential of TDEs for uncovering the environments around black holes when including near-infrared observations in high-cadence transient studies.

     
    more » « less
  2. We present a comparative study of two nearby type Ia supernovae (SNe Ia), 2018xx and 2019gbx, that exploded in NGC 4767 and MCG-02-33-017 at a distance of 48 Mpc and 60 Mpc, respectively. The B -band light curve decline rate for SN 2018xx is estimated to be 1.48 ± 0.07 mag and for SN 2019gbx it is 1.37 ± 0.07 mag. Despite the similarities in photometric evolution, quasi-bolometric luminosity, and spectroscopy between these two SNe Ia, SN 2018xx has been found to be fainter by about ∼0.38 mag in the B -band and has a lower 56 Ni yield. Their host galaxies have similar metallicities at the SN location, indicating that the differences between these two SNe Ia may be associated with the higher progenitor metallicity of SN 2018xx. Further inspection of the near-maximum-light spectra has revealed that SN 2018xx has relatively strong absorption features near 4300 Å relative to SN 2019gbx. The application of the code TARDIS fitting to the above features indicates that the absorption features near 4300 Å appear to be related to not only Fe  II /Mg  II abundance but possibly to the other element abundances as well. Moreover, SN 2018xx shows a weaker carbon absorption at earlier times, which is also consistent with higher ejecta metallicity. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  3. Abstract We present the optical photometric and spectroscopic analysis of two Type Iax supernovae (SNe), 2018cni and 2020kyg. SN 2018cni is a bright Type Iax SN ( M V ,peak = −17.81 ± 0.21 mag), whereas SN 2020kyg ( M V ,peak = −14.52 ± 0.21 mag) is a faint one. We derive 56 Ni mass of 0.07 and 0.002 M ⊙ and ejecta mass of 0.48 and 0.14 M ⊙ for SNe 2018cni and 2020kyg, respectively. A combined study of the bright and faint Type Iax SNe in R / r -band reveals that the brighter objects tend to have a longer rise time. However, the correlation between the peak luminosity and decline rate shows that bright and faint Type Iax SNe exhibit distinct behavior. Comparison with standard deflagration models suggests that SN 2018cni is consistent with the deflagration of a CO white dwarf, whereas the properties of SN 2020kyg can be better explained by the deflagration of a hybrid CONe white dwarf. The spectral features of both the SNe point to the presence of similar chemical species but with different mass fractions. Our spectral modeling indicates stratification at the outer layers and mixed inner ejecta for both of the SNe. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  4. Abstract

    Type Ibn supernovae (SNe) are a rare class of stellar explosions whose progenitor systems are not yet well determined. We present and analyze observations of the Type Ibn SN 2019kbj, and model its light curve in order to constrain its progenitor and explosion parameters. SN 2019kbj shows roughly constant temperature during the first month after peak, indicating a power source (likely circumstellar material interaction) that keeps the continuum emission hot at ∼15,000 K. Indeed, we find that the radioactive decay of56Ni is disfavored as the sole power source of the bolometric light curve. A radioactive decay + circumstellar material (CSM) interaction model, on the other hand, does reproduce the bolometric emission well. The fits prefer a uniform-density CSM shell rather than CSM due to a steady mass-loss wind, similar to what is seen in other Type Ibn SNe. The uniform-density CSM shell model requires ∼0.1Mof56Ni and ∼1Mtotal ejecta mass to reproduce the light curve. SN 2019kbj differs in this manner from another Type Ibn SN with derived physical parameters, SN 2019uo, for which an order of magnitude lower56Ni mass and larger ejecta mass were derived. This points toward a possible diversity in SN Ibn progenitor systems and explosions.

     
    more » « less
  5. Abstract We present near-infrared (NIR) and optical observations of the Type Ic supernova (SN Ic) SN 2021krf obtained between days 13 and 259 at several ground-based telescopes. The NIR spectrum at day 68 exhibits a rising K -band continuum flux density longward of ∼2.0 μ m, and a late-time optical spectrum at day 259 shows strong [O i ] 6300 and 6364 Å emission-line asymmetry, both indicating the presence of dust, likely formed in the SN ejecta. We estimate a carbon-grain dust mass of ∼2 × 10 −5 M ⊙ and a dust temperature of ∼900–1200 K associated with this rising continuum and suggest the dust has formed in SN ejecta. Utilizing the one-dimensional multigroup radiation-hydrodynamics code STELLA, we present two degenerate progenitor solutions for SN 2021krf, characterized by C–O star masses of 3.93 and 5.74 M ⊙ , but with the same best-fit 56 Ni mass of 0.11 M ⊙ for early times (0–70 days). At late times (70–300 days), optical light curves of SN 2021krf decline substantially more slowly than those expected from 56 Co radioactive decay. Lack of H and He lines in the late-time SN spectrum suggests the absence of significant interaction of the ejecta with the circumstellar medium. We reproduce the entire bolometric light curve with a combination of radioactive decay and an additional powering source in the form of a central engine of a millisecond pulsar with a magnetic field smaller than that of a typical magnetar. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  6. Abstract We present the photometry of 16 91T/99aa-like Type Ia Supernovae (SNe Ia) observed by the Las Cumbres Observatory. We also use an additional set of 21 91T/99aa-like SNe Ia and 87 normal SNe Ia from the literature for an analysis of the standardizability of the luminosity of 91T/99aa-like SNe. We find that 91T/99aa-like SNe are 0.2 mag brighter than normal SNe Ia, even when fully corrected by the light-curve shapes and colors. The weighted rms of the 91T/99aa-like SNe (with z CMB > 0.01) Hubble residuals is 0.25 ± 0.03 mag, suggesting that 91T/99aa-like SNe are also excellent relative distance indicators to ±12%. We compare the Hubble residuals with the pseudo-equivalent width (pEW) of Si ii λλ 6355 around the date of maximum brightness. We find that there is a broken linear correlation between those two measurements for our sample including both 91T/99aa-like and normal SNe Ia. As the pEW max (Si ii λλ 6355) increases, the Hubble residual increases when pEW max (Si ii λλ 6355) < 55.6 Å. However, the Hubble residual stays constant beyond this. Given that 91T/99aa-like SNe possess shallower Si ii lines than normal SNe Ia, the linear correlation at pEW max (Si ii λλ 6355) < 55.6 Å can account for the overall discrepancy of Hubble residuals derived from the two subgroups. Such a systematic effect needs to be taken into account when using SNe Ia to measure luminosity distances. 
    more » « less
  7. ABSTRACT

    We present optical photometric and spectroscopic analysis of a Type Iax supernova (SN) 2020rea situated at the brighter luminosity end of Type Iax supernovae (SNe). The light curve decline rate of SN 2020rea is Δm15(g)  = 1.31 ± 0.08 mag which is similar to SNe 2012Z and 2005hk. Modelling the pseudo-bolometric light curve with a radiation diffusion model yields a mass of 56Ni of 0.13 ± 0.01 M⊙ and an ejecta mass of 0.77$^{+0.11}_{-0.21}$ M⊙. Spectral features of SN 2020rea during the photospheric phase show good resemblance with SN 2012Z. TARDIS modelling of the early spectra of SN 2020rea reveals a dominance of Iron Group Elements (IGEs). The photospheric velocity of the Si ii line around maximum for SN 2020rea is ∼ 6500 km s−1 which is less than the measured velocity of the Fe ii line and indicates significant mixing. The observed physical properties of SN 2020rea match with the predictions of pure deflagration model of a Chandrasekhar mass C–O white dwarf. The metallicity of the host galaxy around the SN region is 12 + log(O/H)  = 8.56 ± 0.18 dex which is similar to that of SN 2012Z.

     
    more » « less
  8. Abstract

    We present near- and mid-infrared (0.9–18μm) photometry of supernova (SN) 2021afdx, which was imaged serendipitously with the James Webb Space Telescope (JWST) as part of its Early Release Observations of the Cartwheel Galaxy. Our ground-based optical observations show it is likely to be a Type IIb SN, the explosion of a yellow supergiant, and its infrared spectral energy distribution (SED) ≈200 days after explosion shows two distinct components, which we attribute to hot ejecta and warm dust. By fitting models of dust emission to the SED, we derive a dust mass of(3.80.3+0.5)×103M, which is the highest yet observed in a Type IIb SN but consistent with other Type II SNe observed by the Spitzer Space Telescope. We also find that the radius of the dust is significantly larger than the radius of the ejecta, as derived from spectroscopic velocities during the photospheric phase, which implies that we are seeing an infrared echo off of preexisting dust in the progenitor environment, rather than dust newly formed by the SN. Our results show the power of JWST to address questions of dust formation in SNe, and therefore the presence of dust in the early universe, with much larger samples than have been previously possible.

     
    more » « less
  9. Abstract

    With the advent of high-cadence, all-sky automated surveys, supernovae (SNe) are now discovered closer than ever to their dates of explosion. However, young premaximum light follow-up spectra of Type Ic SNe (SNe Ic), probably arising from the most-stripped massive stars, remain rare despite their importance. In this Letter, we present a set of 49 optical spectra observed with the Las Cumbres Observatory through the Global Supernova Project for 6 SNe Ic, including a total of 17 premaximum spectra, of which 8 are observed more than a week beforeV-band maximum light. This data set increases the total number of publicly available premaximum-light SN Ic spectra by 25%, and we provide publicly available SNID templates that will significantly aid in the fast identification of young SNe Ic in the future. We present a detailed analysis of these spectra, including Feii5169 velocity measurements, Oi7774 line strengths, and continuum shapes. We compare our results to published samples of stripped SNe in the literature and find one SN in our sample that stands out. SN 2019ewu has a unique combination of features for an SN Ic: an extremely blue continuum, high absorption velocities, a P Cygni–shaped feature almost 2 weeks before maximum light that TARDIS radiative transfer modeling attributes to Ciirather than Hα, and weak or nonexistent Oi7774 absorption feature until maximum light.

     
    more » « less
  10. Abstract We present a high-cadence short term photometric and spectroscopic monitoring campaign of a type Ibn SN 2019wep, which is one of the rare SN Ibn after SNe 2010al and 2019uo to display signatures of flash ionization (He ii , C iii , N iii ). We compare the decline rates and rise time of SN 2019wep with other SNe Ibn and fast transients. The post-peak decline in all bands (0.1 mag day −1 ) are consistent with SNe Ibn but less than the fast transients. On the other hand, the Δ m 15 values are slightly lower than the average values for SNe Ibn but consistent with the fast transients. The rise time is typically shorter than SNe Ibn but longer than fast transients. SN 2019wep lies at the fainter end of SNe Ibn but possesses an average luminosity among the fast transients sample. The peculiar color evolution places it between SNe Ib and the most extreme SNe Ibn. The bolometric light-curve modeling shows resemblance with SN 2019uo with ejecta masses consistent with SNe Ib. SN 2019wep belongs to the P cygni subclass of SNe Ibn and shows faster evolution in line velocities as compared to the emission subclass. The post-maximum spectra show close resemblance with ASASSN-15ed hinting it to be of SN Ib nature. The low He i CSM velocities and residual H α further justifies it and provide evidence of an intermittent progenitor between Wolf-Rayet and LBV stars. 
    more » « less