Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Physical platforms such as trapped ions suffer from coherent noise that does not follow a simple stochastic model. We view coherent errors as rotations about a particular axis, and observe that since they can accumulate coherently over time, they can be more damaging. It is natural to consider coherent noise acting transversally giving rise to an effective error, which is a Z-rotation on each qubit by some angle. Rather than addressing coherent noise through active error correction, we instead investigate passive mitigation through decoherence free subspaces. In the language of stabilizer codes, we require the noise to preserve the code space, and to act trivially (as the logical identity operator) on the protected information. Thus, we develop necessary and sufficient conditions for all transversal Z-rotations to preserve the code space of a stabilizer code.more » « less
-
null (Ed.)The teleportation model of quantum computation introduced by Gottesman and Chuang (1999) motivated the development of the Clifford hierarchy. Despite its intrinsic value for quantum computing, the widespread use of magic state distillation, which is closely related to this model, emphasizes the importance of comprehending the hierarchy. There is currently a limited understanding of the structure of this hierarchy, apart from the case of diagonal unitaries (Cui et al., 2017; Rengaswamy et al. 2019). We explore the structure of the second and third levels of the hierarchy, the first level being the ubiquitous Pauli group, via the Weyl (i.e., Pauli) expansion of unitaries at these levels. In particular, we characterize the support of the standard Clifford operations on the Pauli group. Since conjugation of a Pauli by a third level unitary produces traceless Hermitian Cliffords, we characterize their Pauli support as well. Semi-Clifford unitaries are known to have ancilla savings in the teleportation model, and we explore their Pauli support via symplectic transvections. Finally, we show that, up to multiplication by a Clifford, every third level unitary commutes with at least one Pauli matrix. This can be used inductively to show that, up to a multiplication by a Clifford, every third level unitary is supported on a maximal commutative subgroup of the Pauli group. Additionally, it can be easily seen that the latter implies the generalized semi-Clifford conjecture, proven by Beigi and Shor (2010). We discuss potential applications in quantum error correction and the design of flag gadgets.more » « less
An official website of the United States government

Full Text Available