Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Age of stratospheric air is a well established metric for the stratospheric transport circulation. Rooted in a robust theoretical framework, this approach offers the benefit of being deducible from observations of trace gases. Given potential climate‐induced changes, observational constraints on stratospheric circulation are crucial. In the past two decades, scientific progress has been made in three main areas: (a) Enhanced process understanding and the development of process diagnostics led to better quantification of individual transport processes from observations and to a better understanding of model deficits. (b) The global age of air climatology is now well constrained by observations thanks to improved quality and quantity of data, including global satellite data, and through improved and consistent age calculation methods. (c) It is well established and understood that global models predict a decrease in age, that is, an accelerating stratospheric circulation, in response to forcing by greenhouse gases and ozone depleting substances. Observational records now confirm long‐term forced trends in mean age in the lower stratosphere. However, in the mid‐stratosphere, uncertainties in observational records are too large to confirm or disprove the model predictions. Continuous monitoring of stratospheric trace gases and further improved methods to derive age from those tracers will be crucial to better constrain variability and long‐term trends from observations. Future work on mean age as a metric for stratospheric transport will be important due to its potential to enhance the understanding of stratospheric composition changes, address climate model biases, and assess the impacts of proposed climate geoengineering methods.more » « less
-
Abstract We present the design and performance of a four-phased radiofrequency (RF) carpet system for ion transport between 200–600 mbar, significantly higher than previously demonstrated RF carpet applications. The RF carpet, designed with a 160 $$\upmu $$ m pitch, is applied to the lateral collection of ions in xenon at pressures up to 600 mbar. We demonstrate transport efficiency of caesium ions across varying pressures, and compare with microscopic simulations made in the SIMION package. The novel use of an N-phased RF carpet can achieve ion levitation and controlled lateral motion in a denser environment than is typical for RF ion transport in gases. This feature makes such carpets strong candidates for ion transport to single ion sensors envisaged for future neutrinoless double-beta decay experiments in xenon gas.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Abstract We investigate the performance of , a 7.5 GPU-accelerated photon propagation tool compared with a single-threaded simulation. We compare the simulations using an improved model of the gaseous time projection chamber. Performance results suggest that improves simulation speeds by between$$58.47\pm {0.02}$$ and$$181.39\pm {0.28}$$ times relative to a CPU-only simulation and these results vary between different types of GPU and CPU. A detailed comparison shows that the number of detected photons, along with their times and wavelengths, are in good agreement between and .more » « lessFree, publicly-accessible full text available August 1, 2026
-
A<sc>bstract</sc> If neutrinoless double beta decay is discovered, the next natural step would be understanding the lepton number violating physics responsible for it. Several alternatives exist beyond the exchange of light neutrinos. Some of these mechanisms can be distinguished by measuring phase-space observables, namely the opening angle cosθamong the two decay electrons, and the electron energy spectra,T1andT2. In this work, we study the statistical accuracy and precision in measuring these kinematic observables in a future xenon gas detector with the added capability to precisely locate the decay vertex. For realistic detector conditions (a gas pressure of 10 bar and spatial resolution of 4 mm), we find that the average$$ \overline{\cos\ \theta } $$ and$$ \overline{T_1} $$ values can be reconstructed with a precision of 0.19 and 110 keV, respectively, assuming that only 10 neutrinoless double beta decay events are detected.more » « lessFree, publicly-accessible full text available July 15, 2026
-
Abstract The imaging of individual Ba2+ions in high pressure xenon gas is one possible way to attain background-free sensitivity to neutrinoless double beta decay and hence establish the Majorana nature of the neutrino. In this paper we demonstrate selective single Ba2+ion imaging inside a high-pressure xenon gas environment. Ba2+ions chelated with molecular chemosensors are resolved at the gas-solid interface using a diffraction-limited imaging system with scan area of 1 × 1 cm2located inside 10 bar of xenon gas. This form of microscopy represents key ingredient in the development of barium tagging for neutrinoless double beta decay searches in136Xe. This also provides a new tool for studying the photophysics of fluorescent molecules and chemosensors at the solid-gas interface to enable bottom-up design of catalysts and sensors.more » « less
-
Abstract SBND is the near detector of the Short-Baseline Neutrino program at Fermilab. Its location near to the Booster Neutrino Beam source and relatively large mass will allow the study of neutrino interactions on argon with unprecedented statistics. This paper describes the expected performance of the SBND photon detection system, using a simulated sample of beam neutrinos and cosmogenic particles. Its design is a dual readout concept combining a system of 120 photomultiplier tubes, used for triggering, with a system of 192 X-ARAPUCA devices, located behind the anode wire planes. Furthermore, covering the cathode plane with highly-reflective panels coated with a wavelength-shifting compound recovers part of the light emitted towards the cathode, where no optical detectors exist. We show how this new design provides a high light yield and a more uniform detection efficiency, an excellent timing resolution and an independent 3D-position reconstruction using only the scintillation light. Finally, the whole reconstruction chain is applied to recover the temporal structure of the beam spill, which is resolved with a resolution on the order of nanoseconds.more » « less
-
Abstract The Pandora Software Development Kit and algorithm libraries perform reconstruction of neutrino interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at the Deep Underground Neutrino Experiment, which will operate four large-scale liquid argon time projection chambers at the far detector site in South Dakota, producing high-resolution images of charged particles emerging from neutrino interactions. While these high-resolution images provide excellent opportunities for physics, the complex topologies require sophisticated pattern recognition capabilities to interpret signals from the detectors as physically meaningful objects that form the inputs to physics analyses. A critical component is the identification of the neutrino interaction vertex. Subsequent reconstruction algorithms use this location to identify the individual primary particles and ensure they each result in a separate reconstructed particle. A new vertex-finding procedure described in this article integrates a U-ResNet neural network performing hit-level classification into the multi-algorithm approach used by Pandora to identify the neutrino interaction vertex. The machine learning solution is seamlessly integrated into a chain of pattern-recognition algorithms. The technique substantially outperforms the previous BDT-based solution, with a more than 20% increase in the efficiency of sub-1 cm vertex reconstruction across all neutrino flavours.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Abstract This paper introduces a novel track-length extension fitting algorithm for measuring the kinetic energies of inelastically interacting particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss as a function of the energy, including models of electron recombination and detector response. The algorithm can be used to measure the energies of particles that interact before they stop, such as charged pions that are absorbed by argon nuclei. The algorithm's energy measurement resolutions and fractional biases are presented as functions of particle kinetic energy and number of track hits using samples of stopping secondary charged pions in data collected by the ProtoDUNE-SP detector, and also in a detailed simulation. Additional studies describe the impact of thedE/dxmodel on energy measurement performance. The method described in this paper to characterize the energy measurement performance can be repeated in any LArTPC experiment using stopping secondary charged pions.more » « lessFree, publicly-accessible full text available February 1, 2026
An official website of the United States government

Full Text Available