skip to main content

Search for: All records

Creators/Authors contains: "Cavender-Bares, Jeannine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Akira S Mori (Ed.)
    Free, publicly-accessible full text available February 23, 2024
  2. Free, publicly-accessible full text available October 1, 2023
  3. More than ever, ecologists seek to employ herbarium collections to estimate plant functional traits from the past and across biomes. However, many trait measurements are destructive, which may preclude their use on valuable specimens. Researchers increasingly use reflectance spectroscopy to estimate traits from fresh or ground leaves, and to delimit or identify taxa. Here, we extend this body of work to non-destructive measurements on pressed, intact leaves, like those in herbarium collections. Using 618 samples from 68 species, we used partial least-squares regression to build models linking pressed-leaf reflectance spectra to a broad suite of traits, including leaf mass per area (LMA), leaf dry matter content (LDMC), equivalent water thickness, carbon fractions, pigments, and twelve elements. We compared these models to those trained on fresh- or ground-leaf spectra of the same samples. The traits our pressed-leaf models could estimate best were LMA (R2 = 0.932; %RMSE = 6.56), C (R2 = 0.855; %RMSE = 9.03), and cellulose (R2 = 0.803; %RMSE = 12.2), followed by water-related traits, certain nutrients (Ca, Mg, N, and P), other carbon fractions, and pigments (all R2 = 0.514–0.790; %RMSE = 12.8–19.6). Remaining elements were predicted poorly (R2 < 0.5, %RMSE > 20). For most chemicalmore »traits, pressed-leaf models performed better than fresh-leaf models, but worse than ground-leaf models. Pressed-leaf models were worse than fresh-leaf models for estimating LMA and LDMC, but better than ground-leaf models for LMA. Finally, in a subset of samples, we used partial least-squares discriminant analysis to classify specimens among 10 species with near-perfect accuracy (>97%) from pressed- and ground-leaf spectra, and slightly lower accuracy (>93%) from fresh-leaf spectra. These results show that applying spectroscopy to pressed leaves is a promising way to estimate leaf functional traits and identify species without destructive analysis. Pressed-leaf spectra might combine advantages of fresh and ground leaves: like fresh leaves, they retain some of the spectral expression of leaf structure; but like ground leaves, they circumvent the masking effect of water absorption. Our study has far-reaching implications for capturing the wide range of functional and taxonomic information in the world’s preserved plant collections.« less
    Free, publicly-accessible full text available September 27, 2023
  4. null (Ed.)
    Abstract Biodiversity is rapidly changing due to changes in the climate and human related activities; thus, the accurate predictions of species composition and diversity are critical to developing conservation actions and management strategies. In this paper, using satellite remote sensing products as covariates, we constructed stacked species distribution models (S-SDMs) under a Bayesian framework to build next-generation biodiversity models. Model performance of these models was assessed using oak assemblages distributed across the continental United States obtained from the National Ecological Observatory Network (NEON). This study represents an attempt to evaluate the integrated predictions of biodiversity models—including assemblage diversity and composition—obtained by stacking next-generation SDMs. We found that applying constraints to assemblage predictions, such as using the probability ranking rule, does not improve biodiversity prediction models. Furthermore, we found that independent of the stacking procedure (bS-SDM versus pS-SDM versus cS-SDM), these kinds of next-generation biodiversity models do not accurately recover the observed species composition at the plot level or ecological-community scales (NEON plots are 400 m 2 ). However, these models do return reasonable predictions at macroecological scales, i.e., moderately to highly correct assignments of species identities at the scale of NEON sites (mean area ~ 27 km 2 ). Our results provide insights formore »advancing the accuracy of prediction of assemblage diversity and composition at different spatial scales globally. An important task for future studies is to evaluate the reliability of combining S-SDMs with direct detection of species using image spectroscopy to build a new generation of biodiversity models that accurately predict and monitor ecological assemblages through time and space.« less
  5. Abstract
    This data was primarily collected to assess forest quality within the Minneapolis-St. Paul (MSP) Metropolitan Area and to link above-ground and below-ground properties as part of the goals of the MSP-LTER Urban Tree Canopy research group. Here, we sampled vegetation on 40 circular plots with a 12.5 m radius distributed across 13 parks, registering the date of sampling, park and management agency names, the plot number, and geolocation (latitude, longitude, and elevation). The plots were randomly selected based on GEDI (Global Ecosystem Dynamics Investigation instrument) 2021 footprints in the MSP Metropolitan Area along accessible forested areas inside public parks, where the management agency allowed sampling. In each plot, we measured forest structure and diversity metrics, species names and abundance, DBH, height, distance from the plot center, the height where each individual canopy starts, and the relative position, exposure, and density of each canopy. We also measured understory plant structure and diversity in 4 subplots per plot, totaling 160 subplots. In these subplots, we surveyed all individual plants with heights over 20 cm, recording species names and abundance, plant basal diameter, plant height, and the total number of branches. Furthermore, we assessed the canopy openness above each subplot by calculatingMore>>
  6. Summary

    Distinct survival strategies can result from trade‐offs in plant function under contrasting environments. Investment in drought resistance mechanisms can enhance survivorship but result in conservative growth. We tested the hypothesis that the widespread oaks (Quercusspp.) of the Americas exhibit an interspecific trade‐off between drought resistance and growth capacity.

    Using experimental water treatments, we isolated adaptive trait associations among species in relation to their broad climates of origin and tested for correlated evolution between plant functional responses to water availability and habitat.

    Across all lineages, oaks displayed plastic drought responses – typically acclimating through osmolyte accumulation in leaves and/or employing conservative growth. Oaks from xeric climates had higher osmolytes and reduced stomatal pore area index, which allows for moderated gas exchange and limits tissue loss.

    Patterns suggest drought resistance strategies are convergent and under strong adaptive pressure. Leaf habit, however, mediates the growth and drought resistance strategies of oaks. Deciduous species, and evergreen species from xeric climates, have increased drought tolerance through osmoregulation, which allows for continuous, conservative growth. Evergreen mesic species show limited drought resistance but could enhance growth under well‐watered conditions. Consequently, evergreen species from mesic environments are especially vulnerable to chronic drought and climate change.

  7. Reflectance spectra provide integrative measures of plant phenotypes by capturing chemical, morphological, anatomical and architectural trait information. Here, we investigate the linkages between plant spectral variation, and spectral and resource-use complementarity that contribute to ecosystem productivity. In both a forest and prairie grassland diversity experiment, we delineated n -dimensional hypervolumes using wavelength bands of reflectance spectra to test the association between the spectral space occupied by individual plants and their growth, as well as between the spectral space occupied by plant communities and ecosystem productivity. We show that the spectral space occupied by individuals increased with their growth, and the spectral space occupied by plant communities increased with ecosystem productivity. Furthermore, ecosystem productivity was better explained by inter-individual spectral complementarity than by the large spectral space occupied by productive individuals. Our results indicate that spectral hypervolumes of plants can reflect ecological strategies that shape community composition and ecosystem function, and that spectral complementarity can reveal resource-use complementarity.