skip to main content

Search for: All records

Creators/Authors contains: "Celepkolu, Mehmet"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With the increasing prevalence of large language models (LLMs) such as ChatGPT, there is a growing need to integrate natural language processing (NLP) into K-12 education to better prepare young learners for the future AI landscape. NLP, a sub-field of AI that serves as the foundation of LLMs and many advanced AI applications, holds the potential to enrich learning in core subjects in K-12 classrooms. In this experience report, we present our efforts to integrate NLP into science classrooms with 98 middle school students across two US states, aiming to increase students’ experience and engagement with NLP models through textual data analyses and visualizations. We designed learning activities, developed an NLP-based interactive visualization platform, and facilitated classroom learning in close collaboration with middle school science teachers. This experience report aims to contribute to the growing body of work on integrating NLP into K-12 education by providing insights and practical guidelines for practitioners, researchers, and curriculum designers. 
    more » « less
    Free, publicly-accessible full text available March 7, 2025
  2. Intelligent systems to support collaborative learning rely on real-time behavioral data, including language, audio, and video. However, noisy data, such as word errors in speech recognition, audio static or background noise, and facial mistracking in video, often limit the utility of multimodal data. It is an open question of how we can build reliable multimodal models in the face of substantial data noise. In this paper, we investigate the impact of data noise on the recognition of confusion and conflict moments during collaborative programming sessions by 25 dyads of elementary school learners. We measure language errors with word error rate (WER), audio noise with speech-to-noise ratio (SNR), and video errors with frame-by-frame facial tracking accuracy. The results showed that the model’s accuracy for detecting confusion and conflict in the language modality decreased drastically from 0.84 to 0.73 when the WER exceeded 20%. Similarly, in the audio modality, the model’s accuracy decreased sharply from 0.79 to 0.61 when the SNR dropped below 5 dB. Conversely, the model’s accuracy remained relatively constant in the video modality at a comparable level (> 0.70) so long as at least one learner’s face was successfully tracked. Moreover, we trained several multimodal models and found that integrating multimodal data could effectively offset the negative effect of noise in unimodal data, ultimately leading to improved accuracy in recognizing confusion and conflict. These findings have practical implications for the future deployment of intelligent systems that support collaborative learning in actual classroom settings. 
    more » « less
    Free, publicly-accessible full text available October 9, 2024
  3. Conversational AIs such as Alexa and ChatGPT are increasingly ubiquitous in young people’s lives, but these young users are often not afforded the opportunity to learn about the inner workings of these technologies. One of the most powerful ways to foster this learning is to empower youth to create AI that is personally and socially meaningful to them. We have built a novel development environment, AMBY–‘‘AI Made By You’’–for youth to create conversational agents. AMBY was iteratively designed with and for youth aged 12–13 through contextual inquiry and usability studies. AMBY is designed to foster AI learning with features that enable users to generate training datasets and visualize conversational flow. We report on results from a two-week summer camp deployment, and contribute design implications for conversational AI authoring tools that empower AI learning for youth. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. null (Ed.)