skip to main content

Search for: All records

Creators/Authors contains: "Chan, T K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    Cosmic rays (CRs) are an important component in the interstellar medium, but their effect on the dynamics of the disc–halo interface (<10 kpc from the disc) is still unclear. We study the influence of CRs on the gas above the disc with high-resolution FIRE-2 cosmological simulations of late-type L⋆ galaxies at redshift z ∼ 0. We compare runs with and without CR feedback (with constant anisotropic diffusion κ∥ ∼ 3 × 1029 cm2 s−1 and streaming). Our simulations capture the relevant disc–halo interactions, including outflows, inflows, and galactic fountains. Extra-planar gas in all of the runs satisfies dynamical balance, where total pressure balances the weight of the overlying gas. While the kinetic pressure from non-uniform motion (≳1 kpc scale) dominates in the mid-plane, thermal and bulk pressures (or CR pressure if included) take over at large heights. We find that with CR feedback, (1) the warm (∼104 K) gas is slowly accelerated by CRs; (2) the hot (>5 × 105 K) gas scale height is suppressed; (3) the warm-hot (2 × 104–5 × 105 K) medium becomes the most volume-filling phase in the disc–halo interface. We develop a novel conceptual model of the near-disc gas dynamics in low-redshift L⋆ galaxies: with CRs, the disc–halo interface is filled with CR-driven warm winds and hotmore »superbubbles that are propagating into the circumgalactic medium with a small fraction falling back to the disc. Without CRs, most outflows from hot superbubbles are trapped by the existing hot halo and gravity, so typically they form galactic fountains.

    « less
  2. Abstract Extended, old, and round stellar halos appear to be ubiquitous around high-mass dwarf galaxies (10 8.5 < M ⋆ / M ⊙ < 10 9.6 ) in the observed universe. However, it is unlikely that these dwarfs have undergone a sufficient number of minor mergers to form stellar halos that are composed of predominantly accreted stars. Here, we demonstrate that FIRE-2 (Feedback in Realistic Environments) cosmological zoom-in simulations are capable of producing dwarf galaxies with realistic structures, including both a thick disk and round stellar halo. Crucially, these stellar halos are formed in situ, largely via the outward migration of disk stars. However, there also exists a large population of “nondisky” dwarfs in FIRE-2 that lack a well-defined disk/halo and do not resemble the observed dwarf population. These nondisky dwarfs tend to be either more gas-poor or to have burstier recent star formation histories than the disky dwarfs, suggesting that star formation feedback may be preventing disk formation. Both classes of dwarfs underscore the power of a galaxy’s intrinsic shape—which is a direct quantification of the distribution of the galaxy’s stellar content—to interrogate the feedback implementation in simulated galaxies.
    Free, publicly-accessible full text available June 1, 2023

    We use FIRE simulations to study disc formation in z ∼ 0, Milky Way-mass galaxies, and conclude that a key ingredient for the formation of thin stellar discs is the ability for accreting gas to develop an aligned angular momentum distribution via internal cancellation prior to joining the galaxy. Among galaxies with a high fraction ($\gt 70{{\ \rm per\ cent}}$) of their young stars in a thin disc (h/R ∼ 0.1), we find that: (i) hot, virial-temperature gas dominates the inflowing gas mass on halo scales (≳20 kpc), with radiative losses offset by compression heating; (ii) this hot accretion proceeds until angular momentum support slows inward motion, at which point the gas cools to $\lesssim 10^4\, {\rm K}$; (iii) prior to cooling, the accreting gas develops an angular momentum distribution that is aligned with the galaxy disc, and while cooling transitions from a quasi-spherical spatial configuration to a more-flattened, disc-like configuration. We show that the existence of this ‘rotating cooling flow’ accretion mode is strongly correlated with the fraction of stars forming in a thin disc, using a sample of 17 z ∼ 0 galaxies spanning a halo mass range of 1010.5 M⊙ ≲ Mh ≲ 1012 M⊙ and stellarmore »mass range of 108 M⊙ ≲ M⋆ ≲ 1011 M⊙. Notably, galaxies with a thick disc or irregular morphology do not undergo significant angular momentum alignment of gas prior to accretion and show no correspondence between halo gas cooling and flattening. Our results suggest that rotating cooling flows (or, more generally, rotating subsonic flows) that become coherent and angular momentum-supported prior to accretion on to the galaxy are likely a necessary condition for the formation of thin, star-forming disc galaxies in a ΛCDM universe.

    « less
  4. null (Ed.)
    ABSTRACT We study the impact of cosmic rays (CRs) on the structure of virial shocks, using a large suite of high-resolution cosmological FIRE-2 simulations accounting for CR injection by supernovae. In Milky Way-mass, low-redshift (z ≲ 1−2) haloes, which are expected to form ‘hot haloes’ with slowly cooling gas in quasi-hydrostatic equilibrium (with a stable virial shock), our simulations without CRs do exhibit clear virial shocks. The cooler phase condensing out from inflows becomes pressure confined to overdense clumps, embedded in low-density, volume-filling hot gas with volume-weighted cooling time longer than inflow time. The gas thus transitions sharply from cool free-falling inflow, to hot and thermal-pressure supported at approximately the virial radius (≈Rvir), and the shock is quasi-spherical. With CRs, we previously argued that haloes in this particular mass and redshift range build up CR-pressure-dominated gaseous haloes. Here, we show that when CR pressure dominates over thermal pressure, there is no significant virial shock. Instead, inflowing gas is gradually decelerated by the CR pressure gradient and the gas is relatively subsonic out to and even beyond Rvir. Rapid cooling also maintains subvirial temperatures in the inflowing gas within ∼Rvir.
  5. ABSTRACT Without additional heating, radiative cooling of the halo gas of massive galaxies (Milky Way-mass and above) produces cold gas or stars exceeding that observed. Heating from active galactic nucleus (AGN) jets is likely required, but the jet properties remain unclear. This is particularly challenging for galaxy simulations, where the resolution is orders-of-magnitude insufficient to resolve jet formation and evolution. On such scales, the uncertain parameters include the jet energy form [kinetic, thermal, cosmic ray (CR)]; energy, momentum, and mass flux; magnetic fields; opening angle; precession; and duty cycle. We investigate these parameters in a $10^{14}\, {\rm M}_{\odot }$ halo using high-resolution non-cosmological magnetohydrodynamic simulations with the FIRE-2 (Feedback In Realistic Environments) stellar feedback model, conduction, and viscosity. We explore which scenarios qualitatively meet observational constraints on the halo gas and show that CR-dominated jets most efficiently quench the galaxy by providing CR pressure support and modifying the thermal instability. Mildly relativistic (∼MeV or ∼1010K) thermal plasma jets work but require ∼10 times larger energy input. For fixed energy flux, jets with higher specific energy (longer cooling times) quench more effectively. For this halo mass, kinetic jets are inefficient at quenching unless they have wide opening or precession angles. Magnetic fieldsmore »also matter less except when the magnetic energy flux reaches ≳ 1044 erg s−1 in a kinetic jet model, which significantly widens the jet cocoon. The criteria for a successful jet model are an optimal energy flux and a sufficiently wide jet cocoon with a long enough cooling time at the cooling radius.« less
  6. null (Ed.)
    ABSTRACT The microphysics of ∼ GeV cosmic ray (CR) transport on galactic scales remain deeply uncertain, with almost all studies adopting simple prescriptions (e.g. constant diffusivity). We explore different physically motivated, anisotropic, dynamical CR transport scalings in high-resolution cosmological Feedback In Realistic Environment (FIRE) simulations of dwarf and ∼L* galaxies where scattering rates vary with local plasma properties motivated by extrinsic turbulence (ET) or self-confinement (SC) scenarios, with varying assumptions about e.g. turbulent power spectra on un-resolved scales, Alfvén-wave damping, etc. We self-consistently predict observables including γ-rays (Lγ), grammage, residence times, and CR energy densities to constrain the models. We demonstrate many non-linear dynamical effects (not captured in simpler models) tend to enhance confinement. For example, in multiphase media, even allowing arbitrary fast transport in neutral gas does not substantially reduce CR residence times (or Lγ), as transport is rate-limited by the ionized WIM and ‘inner CGM’ gaseous halo (104–106 K gas within $\lesssim 10\!-\!30\,$ kpc), and Lγ can be dominated by trapping in small ‘patches’. Most physical ET models contribute negligible scattering of ∼1–10 GeV CRs, but it is crucial to account for anisotropy and damping (especially of fast modes) or else scattering rates would violate observations. We show that the most widelymore »assumed scalings for SC models produce excessive confinement by factors ≳100 in the warm ionized medium (WIM) and inner CGM, where turbulent and Landau damping dominate. This suggests either a breakdown of quasi-linear theory used to derive the CR transport parameters in SC, or that other novel damping mechanisms dominate in intermediate-density ionized gas.« less
  7. null (Ed.)
    Abstract Cosmic rays (CRs) with ∼ GeV energies can contribute significantly to the energy and pressure budget in the interstellar, circumgalactic, and intergalactic medium (ISM, CGM, IGM). Recent cosmological simulations have begun to explore these effects, but almost all studies have been restricted to simplified models with constant CR diffusivity and/or streaming speeds. Physical models of CR propagation/scattering via extrinsic turbulence and self-excited waves predict transport coefficients which are complicated functions of local plasma properties. In a companion paper, we consider a wide range of observational constraints to identify proposed physically-motivated cosmic-ray propagation scalings which satisfy both detailed Milky Way (MW) and extra-galactic γ-ray constraints. Here, we compare the effects of these models relative to simpler “diffusion+streaming” models on galaxy and CGM properties at dwarf through MW mass scales. The physical models predict large local variations in CR diffusivity, with median diffusivity increasing with galacto-centric radii and decreasing with galaxy mass and redshift. These effects lead to a more rapid dropoff of CR energy density in the CGM (compared to simpler models), in turn producing weaker effects of CRs on galaxy star formation rates (SFRs), CGM absorption profiles and galactic outflows. The predictions of the more physical CR models tend tomore »lie “in between” models which ignore CRs entirely and models which treat CRs with constant diffusivity.« less
  8. null (Ed.)
    Abstract We study the effects of cosmic rays (CRs) on outflows from star-forming galaxies in the circum and inter-galactic medium (CGM/IGM), in high-resolution, fully-cosmological FIRE-2 simulations (accounting for mechanical and radiative stellar feedback, magnetic fields, anisotropic conduction/viscosity/CR diffusion and streaming, and CR losses). We showed previously that massive (Mhalo ≳ 1011 M⊙), low-redshift (z ≲ 1 − 2) halos can have CR pressure dominate over thermal CGM pressure and balance gravity, giving rise to a cooler CGM with an equilibrium density profile. This dramatically alters outflows. Absent CRs, high gas thermal pressure in massive halos “traps” galactic outflows near the disk, so they recycle. With CRs injected in supernovae as modeled here, the low-pressure halo allows “escape” and CR pressure gradients continuously accelerate this material well into the IGM in “fast” outflows, while lower-density gas at large radii is accelerated in-situ into “slow” outflows that extend to >Mpc scales. CGM/IGM outflow morphologies are radically altered: they become mostly volume-filling (with inflow in a thin mid-plane layer) and coherently biconical from the disk to >Mpc. The CR-driven outflows are primarily cool (T ∼ 105 K) and low-velocity. All of these effects weaken and eventually vanish at lower halo masses (≲ 1011 M⊙) or highermore »redshifts (z ≳ 1 − 2), reflecting the ratio of CR to thermal+gravitational pressure in the outer halo. We present a simple analytic model which explains all of the above phenomena. We caution that these predictions may depend on uncertain CR transport physics.« less
  9. null (Ed.)
  10. ABSTRACT We investigate the impact of cosmic rays (CRs) on the circumgalactic medium (CGM) in FIRE-2 simulations, for ultra-faint dwarf through Milky Way (MW)-mass haloes hosting star-forming (SF) galaxies. Our CR treatment includes injection by supernovae, anisotropic streaming and diffusion along magnetic field lines, and collisional and streaming losses, with constant parallel diffusivity $\kappa \sim 3\times 10^{29}\, \mathrm{cm^2\ s^{-1}}$ chosen to match γ-ray observations. With this, CRs become more important at larger halo masses and lower redshifts, and dominate the pressure in the CGM in MW-mass haloes at z ≲ 1–2. The gas in these ‘CR-dominated’ haloes differs significantly from runs without CRs: the gas is primarily cool (a few ${\sim}10^{4}\,$ K), and the cool phase is volume-filling and has a thermal pressure below that needed for virial or local thermal pressure balance. Ionization of the ‘low’ and ‘mid’ ions in this diffuse cool gas is dominated by photoionization, with O vi columns ${\gtrsim}10^{14.5}\, \mathrm{cm^{-2}}$ at distances ${\gtrsim}150\, \mathrm{kpc}$. CR and thermal gas pressure are locally anticorrelated, maintaining total pressure balance, and the CGM gas density profile is determined by the balance of CR pressure gradients and gravity. Neglecting CRs, the same haloes are primarily warm/hot ($T\gtrsim 10^{5}\,$K) with thermal pressure balancing gravity,more »collisional ionization dominates, O vi columns are lower and Ne viii higher, and the cool phase is confined to dense filaments in local thermal pressure equilibrium with the hot phase.« less