skip to main content

Search for: All records

Creators/Authors contains: "Charisi, Maria"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Supermassive black hole binaries (SMBHBs) are an inevitable consequence of galaxy mergers. At sub-parsec separations, they are practically impossible to resolve and the most promising technique is to search for quasars with periodic variability. However, searches for quasar periodicity in time-domain data are challenging due to the stochastic variability of quasars. In this paper, we used Bayesian methods to disentangle periodic SMBHB signals from intrinsic damped random walk (DRW) variability in AGN light curves. We simulated a wide variety of realistic DRW and DRW+sine light curves. Their observed properties are modeled after the Catalina Real-time Transient Survey (CRTS) and expected properties of the upcoming Legacy Survey of Space and Time (LSST) from the Vera C. Rubin Observatory. Through a careful analysis of parameter estimation and Bayesian model selection, we investigated the range of parameter space for which binary systems can be detected. We also examined which DRW signals can mimic periodicity and be falsely classified as binary candidates. We found that periodic signals are more easily detectable if the period is short or the amplitude of the signal is large compared to the contribution of the DRW noise. We saw similar detection rates both in the CRTS and LSST-like simulations,more »while the false detection rate depends on the quality of the data and is minimal in LSST. Our idealized simulations provide an excellent way to uncover the intrinsic limitations in quasar periodicity searches and set the stage for future searches for SMBHBs.« less
  2. ABSTRACT The variability of quasars across multiple wavelengths is a useful probe of physical conditions in active galactic nuclei. In particular, variable accretion rates, instabilities, and reverberation effects in the accretion disc of a supermassive black hole are expected to produce correlated flux variations in ultraviolet (UV) and optical bands. Recent work has further argued that binary quasars should exhibit strongly correlated UV and optical periodicities. Strong UV–optical correlations have indeed been established in small samples of (N ≲ 30) quasars with well-sampled light curves, and have extended the ‘bluer-when-brighter’ trend previously found within the optical bands. Here, we further test the nature of quasar variability by examining the observed-frame UV–optical correlations among bright quasars extracted from the Half Million Quasars (HMQ) catalogue. We identified a large sample of 1315 quasars in HMQ with overlapping UV and optical light curves from the Galaxy Evolution Explorer and the Catalina Real-time Transient Survey, respectively. We find that strong correlations exist in this much larger sample, but we rule out, at ∼95 per cent confidence, the simple hypothesis that the intrinsic UV and optical variations of all quasars are fully correlated. Our results therefore imply the existence of physical mechanism(s) that can generate uncorrelated opticalmore »and UV flux variations.« less
  3. ABSTRACT The bright quasar PG1302-102 has been identified as a candidate supermassive black hole binary from its near-sinusoidal optical variability. While the significance of its optical periodicity has been debated due to the stochastic variability of quasars, its multiwavelength variability in the ultraviolet (UV) and optical bands is consistent with relativistic Doppler boost caused by the orbital motion in a binary. However, this conclusion was based previously on sparse UV data that were not taken simultaneously with the optical data. Here, we report simultaneous follow-up observations of PG1302-102 with the Ultraviolet Optical Telescope on the Neil Gehrels Swift Observatory in six optical + UV bands. The additional nine Swift observations produce light curves roughly consistent with the trend under the Doppler boost hypothesis, which predicts that UV variability should track the optical, but with a ∼2.2 times higher amplitude. We perform a statistical analysis to quantitatively test this hypothesis. We find that the data are consistent with the Doppler boost hypothesis when we compare the the amplitudes in optical B-band and UV light curves. However, the ratio of UV to V-band variability is larger than expected and is consistent with the Doppler model, only if either the UV/optical spectral slopes vary,more »the stochastic variability makes a large contribution in the UV, or the sparse new optical data underestimate the true optical variability. We have evidence for the latter from comparison with the optical light curve from All-Sky Automated Survey for Supernovae. Additionally, the simultaneous analysis of all four bands strongly disfavours the Doppler boost model whenever Swift V band is involved. Additional, simultaneous optical + UV observations tracing out another cycle of the 5.2-yr proposed periodicity should lead to a definitive conclusion.« less
  4. ABSTRACT

    Supermassive black hole binaries (SMBHBs) are a natural outcome of galaxy mergers and should form frequently in galactic nuclei. Sub-parsec binaries can be identified from their bright electromagnetic emission, e.g. Active Galactic Nuclei (AGNs) with Doppler shifted broad emission lines or AGN with periodic variability, as well as from the emission of strong gravitational radiation. The most massive binaries (with total mass >108M⊙) emit in the nanohertz band and are targeted by Pulsar Timing Arrays (PTAs). Here we examine the synergy between electromagnetic and gravitational wave signatures of SMBHBs. We connect both signals to the orbital dynamics of the binary and examine the common link between them, laying the foundation for joint multimessenger observations. We find that periodic variability arising from relativistic Doppler boost is the most promising electromagnetic signature to connect with GWs. We delineate the parameter space (binary total mass/chirp mass versus binary period/GW frequency) for which joint observations are feasible. Currently multimessenger detections are possible only for the most massive and nearby galaxies, limited by the sensitivity of PTAs. However, we demonstrate that as PTAs collect more data in the upcoming years, the overlapping parameter space is expected to expand significantly.

  5. Abstract We examine the light curves of two quasars, motivated by recent suggestions that a supermassive black hole binary (SMBHB) can exhibit sharp lensing spikes. We model the variability of each light curve as due to a combination of two relativistic effects: the orbital relativistic Doppler boost and gravitational binary self-lensing. In order to model each system we extend previous Doppler plus self-lensing models to include eccentricity. The first quasar is identified in optical data as a binary candidate with a 20-yr period (Ark 120), and shows a prominent spike. For this source, we rule out the lensing hypothesis and disfavor the Doppler-boost hypothesis due to discrepancies in the measured vs. recovered values of the binary mass and optical spectral slope. The second source, which we nickname Spikey, is the rare case of an active galactic nucleus (AGN) identified in Kepler’s high-quality, high-cadence photometric data. For this source, we find a model, consisting of a combination of Doppler modulation and a narrow symmetric lensing spike, consistent with an eccentric SMBHB with mass Mtot = 3 × 107M⊙, rest-frame orbital period T = 418 days, eccentricity e = 0.5, and seen at an inclination 8○ from edge-on. This interpretation can be testedmore »by monitoring Spikey for periodic behavior and recurring flares in the next few years. In preparation for such monitoring we present the first X-ray observations of this object taken by the Neil Gehrels Swift observatory.« less
  6. Abstract We search NANOGrav’s 12.5 yr data set for evidence of a gravitational-wave background (GWB) with all the spatial correlations allowed by general metric theories of gravity. We find no substantial evidence in favor of the existence of such correlations in our data. We find that scalar-transverse (ST) correlations yield signal-to-noise ratios and Bayes factors that are higher than quadrupolar (tensor-transverse, TT) correlations. Specifically, we find ST correlations with a signal-to-noise ratio of 2.8 that are preferred over TT correlations (Hellings and Downs correlations) with Bayesian odds of about 20:1. However, the significance of ST correlations is reduced dramatically when we include modeling of the solar system ephemeris systematics and/or remove pulsar J0030+0451 entirely from consideration. Even taking the nominal signal-to-noise ratios at face value, analyses of simulated data sets show that such values are not extremely unlikely to be observed in cases where only the usual TT modes are present in the GWB. In the absence of a detection of any polarization mode of gravity, we place upper limits on their amplitudes for a spectral index of γ = 5 and a reference frequency of f yr = 1 yr −1 . Among the upper limits for eight generalmore »families of metric theories of gravity, we find the values of A TT 95 % = ( 9.7 ± 0.4 ) × 10 − 16 and A ST 95 % = ( 1.4 ± 0.03 ) × 10 − 15 for the family of metric spacetime theories that contain both TT and ST modes.« less