skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Search for: All records

Creators/Authors contains: "Che-Castaldo, Judy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Predictions of biodiversity trajectories under climate change are crucial in order to act effectively in maintaining the diversity of species. In many ecological applications, future predictions are made under various global warming scenarios, as described by a range of different climate models. We propose a clustering methodology to synthesize and interpret the outputs of these various predictions.We propose an interpretable and flexible two‐step methodology to measure the similarity between predicted species range maps and to cluster the future scenario predictions utilizing a spectral clustering technique. We implement and provide code for this method.We find that clustering based on predicted species range maps is mainly driven by the amount of warming rather than climate model or future scenario. We contrast this with clustering based only on predicted climate variables, which is driven primarily by climate models, that is, scenarios of the same climate model are clustered together, even when the amount of warming input to the models is varied.The differences between species‐based and climate‐based clusterings illustrate that it is crucial to incorporate ecological information to understand the relevant differences between climate models. Our findings can be used to better synthesize forecasts of biodiversity change under the wide spectrum of results that emerge when considering potential future scenarios. 
    more » « less
  2. Silva, Daniel de (Ed.)
    Biodiversity loss is a global ecological crisis that is both a driver of and response to environmental change. Understanding the connections between species declines and other components of human-natural systems extends across the physical, life, and social sciences. From an analysis perspective, this requires integration of data from different scientific domains, which often have heterogeneous scales and resolutions. Community science projects such as eBird may help to fill spatiotemporal gaps and enhance the resolution of standardized biological surveys. Comparisons between eBird and the more comprehensive North American Breeding Bird Survey (BBS) have found these datasets can produce consistent multi-year abundance trends for bird populations at national and regional scales. Here we investigate the reliability of these datasets for estimating patterns at finer resolutions, inter-annual changes in abundance within town boundaries. Using a case study of 14 focal species within Massachusetts, we calculated four indices of annual relative abundance using eBird and BBS datasets, including two different modeling approaches within each dataset. We compared the correspondence between these indices in terms of multi-year trends, annual estimates, and inter-annual changes in estimates at the state and town-level. We found correspondence between eBird and BBS multi-year trends, but this was not consistent across all species and diminished at finer, inter-annual temporal resolutions. We further show that standardizing modeling approaches can increase index reliability even between datasets at coarser temporal resolutions. Our results indicate that multiple datasets and modeling methods should be considered when estimating species population dynamics at finer temporal resolutions, but standardizing modeling approaches may improve estimate correspondence between abundance datasets. In addition, reliability of these indices at finer spatial scales may depend on habitat composition, which can impact survey accuracy. 
    more » « less
  3. Abstract Animal-related outages (AROs) are a prevalent form of outages in electrical distribution systems. Animal-infrastructure interactions vary across species and regions, underlining the need to study the animal-outage relationship in more species and diverse systems. Animal activity has been an indicator of reliability in the electrical grid system by describing temporal patterns in AROs. However, these ARO models have been limited by a lack of available species activity data, instead approximating activity based on seasonal patterns and weather dependency in ARO records and characteristics of broad taxonomic groups, e.g. squirrels. We highlight available resources to fill the ecological data gap limiting joint analyses between ecology and energy sectors. Species distribution modeling (SDM), a common technique to model the distribution of a species across geographic space and time, paired with community science data, provided us with species-specific estimates of activity to analyze alongside spatio-temporal patterns of ARO severity. We use SDM estimates of activity for multiple outage-prone bird species to examine whether diverse animal activity patterns were important predictors of ARO severity by capturing existing variation within animal-outage relationships. Low dimensional representation and single patterns of bird activity were important predictors of ARO severity in Massachusetts. However, both patterns of summer migrants and overwintering species showed some degree of importance, indicating that multiple biological patterns could be considered in future models of grid reliability. Making the best available resources from quantitative ecology known to outside disciplines can allow for more interdisciplinary data analyses between ecological and non-ecological systems. This can result in further opportunities to examine and validate the relationships between animal activity and grid reliability in diverse systems. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    The electric power grid is a critical societal resource connecting multiple infrastructural domains such as agriculture, transportation, and manufacturing. The electrical grid as an infrastructure is shaped by human activity and public policy in terms of demand and supply requirements. Further, the grid is subject to changes and stresses due to diverse factors including solar weather, climate, hydrology, and ecology. The emerging interconnected and complex network dependencies make such interactions increasingly dynamic, posing novel risks, and presenting new challenges to manage the coupled human–natural system. This paper provides a survey of models and methods that seek to explore the significant interconnected impact of the electric power grid and interdependent domains. We also provide relevant critical risk indicators (CRIs) across diverse domains that may be used to assess risks to electric grid reliability, including climate, ecology, hydrology, finance, space weather, and agriculture. We discuss the convergence of indicators from individual domains to explore possible systemic risk, i.e., holistic risk arising from cross-domain interconnections. Further, we propose a compositional approach to risk assessment that incorporates diverse domain expertise and information, data science, and computer science to identify domain-specific CRIs and their union in systemic risk indicators. Our study provides an important first step towards data-driven analysis and predictive modeling of risks in interconnected human–natural systems. 
    more » « less
  6. null (Ed.)
  7. Abstract There is an urgent need to synthesize the state of our knowledge on plant responses to climate. The availability of open-access data provide opportunities to examine quantitative generalizations regarding which biomes and species are most responsive to climate drivers. Here, we synthesize time series of structured population models from 162 populations of 62 plants, mostly herbaceous species from temperate biomes, to link plant population growth rates (λ) to precipitation and temperature drivers. We expect: (1) more pronounced demographic responses to precipitation than temperature, especially in arid biomes; and (2) a higher climate sensitivity in short-lived rather than long-lived species. We find that precipitation anomalies have a nearly three-fold larger effect onλthan temperature. Species with shorter generation time have much stronger absolute responses to climate anomalies. We conclude that key species-level traits can predict plant population responses to climate, and discuss the relevance of this generalization for conservation planning. 
    more » « less