skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Chen, Ang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 13, 2026
  2. Free, publicly-accessible full text available August 6, 2026
  3. Free, publicly-accessible full text available December 10, 2025
  4. Kernel task scheduling is important for application performance, adaptability to new hardware, and complex user requirements. However, developing, testing, and debugging new scheduling algorithms in Linux, the most widely used cloud operating system, is slow and difficult. We developed Enoki, a framework for high velocity development of Linux kernel schedulers. Enoki schedulers are written in safe Rust, and the system supports live upgrade of new scheduling policies into the kernel, userspace debugging, and bidirectional communication with applications. A scheduler implemented with Enoki achieved near identical performance (within 1% on average) to the default Linux scheduler CFS on a wide range of benchmarks. Enoki is also able to support a range of research schedulers, specifically the Shinjuku scheduler, a locality aware scheduler, and the Arachne core arbiter, with good performance. 
    more » « less