skip to main content


Search for: All records

Creators/Authors contains: "Chen, Hong-You"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fractals are geometric shapes that can display complex and self-similar patterns found in nature (e.g., clouds and plants). Recent works in visual recognition have leveraged this property to create random fractal images for model pre-training. In this paper, we study the inverse problem --- given a target image (not necessarily a fractal), we aim to generate a fractal image that looks like it. We propose a novel approach that learns the parameters underlying a fractal image via gradient descent. We show that our approach can find fractal parameters of high visual quality and be compatible with different loss functions, opening up several potentials, e.g., learning fractals for downstream tasks, scientific understanding, etc. 
    more » « less
    Free, publicly-accessible full text available June 27, 2024
  2. Federated learning is promising for its capability to collaboratively train models with multiple clients without accessing their data, but vulnerable when clients’ data distributions diverge from each other. This divergence further leads to a dilemma: “Should we prioritize the learned model’s generic performance (for future use at the server) or its personalized performance (for each client)?” These two, seemingly competing goals have divided the community to focus on one or the other, yet in this paper we show that it is possible to approach both at the same time. Concretely, we propose a novel federated learning framework that explicitly decouples a model’s dual duties with two prediction tasks. On the one hand, we introduce a family of losses that are robust to non-identical class distributions, enabling clients to train a generic predictor with a consistent objective across them. On the other hand, we formulate the personalized predictor as a lightweight adaptive module that is learned to minimize each client’s empirical risk on top of the generic predictor. With this two-loss, two-predictor framework which we name Federated Robust Decoupling (FED-ROD), the learned model can simultaneously achieve state-of- the-art generic and personalized performance, essentially bridging the two tasks. 
    more » « less
  3. The effectiveness of unsupervised domain adaptation degrades when there is a large discrepancy between the source and target domains. Gradual domain adaption (GDA) is one promising way to mitigate such an issue, by leveraging additional un- labeled data that gradually shift from the source to the target. Through sequentially adapting the model along the “indexed” intermediate domains, GDA substantially improves the overall adaptation performance. In practice, however, the extra unla- beled data may not be separated into intermediate domains and indexed properly, limiting the applicability of GDA. In this paper, we investigate how to discover the sequence of intermediate domains when it is not already available. Concretely, we propose a coarse-to-fine framework, which starts with a coarse domain dis- covery step via progressive domain discriminator training. This coarse domain sequence then undergoes a fine indexing step via a novel cycle-consistency loss, which encourages the next intermediate domain to preserve sufficient discriminative knowledge of the current intermediate domain. The resulting domain sequence can then be used by a GDA algorithm. On benchmark data sets of GDA, we show that our approach, which we name Intermediate DOmain Labeler (IDOL), can lead to comparable or even better adaptation performance compared to the pre-defined do- main sequence, making GDA more applicable and robust to the quality of domain sequences. Codes are available at https://github.com/hongyouc/IDOL. 
    more » « less