skip to main content

Search for: All records

Creators/Authors contains: "Chen, Jiahao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ScAlMgO4 (SAM) is a promising substrate material for group III-nitride semiconductors. SAM has a lower lattice mismatch with III-nitride materials compared to conventionally used sapphire (Al2O3) and silicon substrates. Bulk SAM substrate has the issues of high cost and lack of large area substrates. Utilizing solid-phase epitaxy to transform an amorphous SAM on a sapphire substrate into a crystalline form is a cost-efficient and scalable approach. Amorphous SAM layers were deposited on 0001-oriented Al2O3 by sputtering and crystallized by annealing at a temperature greater than 850 °C. Annealing under suboptimal annealing conditions results in a larger volume fraction of a competing spinel phase (MgAl2O4) exhibiting themselves as crystal facets on the subsequently grown InGaN layers during MOCVD growth. InGaN on SAM layers demonstrated both a higher intensity and emission redshift compared to the co-loaded InGaN on GaN on sapphire samples, providing a promising prospect for achieving efficient longer-wavelength emitters. 
    more » « less
    Free, publicly-accessible full text available March 1, 2024
  2. Abstract

    The development of new materials and their compositional and microstructural optimization are essential in regard to next-generation technologies such as clean energy and environmental sustainability. However, materials discovery and optimization have been a frustratingly slow process. The Edisonian trial-and-error process is time consuming and resource inefficient, particularly when contrasted with vast materials design spaces1. Whereas traditional combinatorial deposition methods can generate material libraries2,3, these suffer from limited material options and inability to leverage major breakthroughs in nanomaterial synthesis. Here we report a high-throughput combinatorial printing method capable of fabricating materials with compositional gradients at microscale spatial resolution. In situ mixing and printing in the aerosol phase allows instantaneous tuning of the mixing ratio of a broad range of materials on the fly, which is an important feature unobtainable in conventional multimaterials printing using feedstocks in liquid–liquid or solid–solid phases4–6. We demonstrate a variety of high-throughput printing strategies and applications in combinatorial doping, functional grading and chemical reaction, enabling materials exploration of doped chalcogenides and compositionally graded materials with gradient properties. The ability to combine the top-down design freedom of additive manufacturing with bottom-up control over local material compositions promises the development of compositionally complex materials inaccessible via conventional manufacturing approaches.

    more » « less
    Free, publicly-accessible full text available May 11, 2024
  3. The ability of thermoelectric (TE) materials to convert thermal energy to electricity and vice versa highlights them as a promising candidate for sustainable energy applications. Despite considerable increases in the figure of merit zT of thermoelectric materials in the past two decades, there is still a prominent need to develop scalable synthesis and flexible manufacturing processes to convert high-efficiency materials into high-performance devices. Scalable printing techniques provide a versatile solution to not only fabricate both inorganic and organic TE materials with fine control over the compositions and microstructures, but also manufacture thermoelectric devices with optimized geometric and structural designs that lead to improved efficiency and system-level performances. In this review, we aim to provide a comprehensive framework of printing thermoelectric materials and devices by including recent breakthroughs and relevant discussions on TE materials chemistry, ink formulation, flexible or conformable device design, and processing strategies, with an emphasis on additive manufacturing techniques. In addition, we review recent innovations in the flexible, conformal, and stretchable device architectures and highlight state-of-the-art applications of these TE devices in energy harvesting and thermal management. Perspectives of emerging research opportunities and future directions are also discussed. While this review centers on thermoelectrics, the fundamental ink chemistry and printing processes possess the potential for applications to a broad range of energy, thermal and electronic devices. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    Solution-processed semiconducting main-group chalcogenides (MMCs) have attracted increasing research interest for next-generation device technologies owing to their unique nanostructures and superior properties. To achieve the full potential of MMCs, the development of highly universal, scalable, and sustainable synthesis and processing methods of chalcogenide particles is thus becoming progressively more important. Here we studied scalable factors for the synthesis of two-dimensional (2D) V–VI chalcogenide nanoplates (M 2 Q 3  : M = Sb, Bi; Q = Se, Te) and systematically investigated their colloidal behaviour and chemical stability. Based on a solvent engineering technique, we demonstrated scale-up syntheses of MMCs up to a 900% increase of batch size compared with conventional hydrazine-based gram-level syntheses, and such a scalable approach is highly applicable to various binary and ternary MMCs. Furthermore, we studied the stability of printable chalcogenide nanoparticle inks with several formulation factors including solvents, additives, and pH values, resulting in inks with high chemical stability (>4 months). As a proof of concept, we applied our solution-processed chalcogenide particles to multiple additive manufacturing methods, confirming the high printability and processability of MMC inks. The ability to combine the top-down designing freedom of additive manufacturing with bottom-up scalable synthesis of chalcogenide particles promises great opportunities for large-scale design and manufacturing of chalcogenide-based functional devices for broad application. 
    more » « less
  6. Assessing the fairness of a decision making system with respect to a protected class, such as gender or race, is challenging when class membership labels are unavailable. Probabilistic models for predicting the protected class based on observable proxies, such as surname and geolocation for race, are sometimes used to impute these missing labels for compliance assessments. Empirically, these methods are observed to exaggerate disparities, but the reason why is unknown. In this paper, we decompose the biases in estimating outcome disparity via threshold-based imputation into multiple interpretable bias sources, allowing us to explain when over- or underestimation occurs. We also propose an alternative weighted estimator that uses soft classification, and show that its bias arises simply from the conditional covariance of the outcome with the true class membership. Finally, we illustrate our results with numerical simulations and a public dataset of mortgage applications, using geolocation as a proxy for race. We confirm that the bias of threshold-based imputation is generally upward, but its magnitude varies strongly with the threshold chosen. Our new weighted estimator tends to have a negative bias that is much simpler to analyze and reason about. 
    more » « less
  7. Abstract

    Self‐assembly is a bioinspired strategy to craft materials for renewable and clean energy technologies. In plants, the alignment and assembly of the light‐harvesting protein machinery in the green leaf optimize the ability to efficiently convert light from the sun to form chemical bonds. In artificial systems, strategies based on self‐assembly using noncovalent interactions offer the possibility to mimic this functional correlation among molecules to optimize photocatalysis, photovoltaics, and energy storage. One of the long‐term objectives of the field described here as supramolecular energy materials is to learn how to design soft materials containing light‐harvesting assemblies and catalysts to generate fuels and useful chemicals. Supramolecular energy materials also hold great potential in the design of systems for photovoltaics in which intermolecular interactions in self‐assembled structures, for example, in electron donor and acceptor phases, maximize charge transport and avoid exciton recombination. Possible pathways to integrate organic and inorganic structures by templating strategies and electrodeposition to create materials relevant to energy challenges including photoconductors and supercapacitors are also described. The final topic discussed is the synthesis of hybrid perovskites in which organic molecules are used to modify both structure and functions, which may include chemical stability, photovoltaics, and light emission.

    more » « less