skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Qingyun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Free, publicly-accessible full text available December 2, 2025
  3. The feedback arc set problem is one of the most fundamental and well-studied ranking problems where n objects are to be ordered based on their pairwise comparison. The problem enjoys several efficient approximation algorithms in the offline setting. Unfortunately, online there are strong lower bounds on the competitive ratio establishing that no algorithm can perform well in the worst case.This paper introduces a new beyond-worst-case model for online feedback arc set. In the model, a sample of the input is given to the algorithm offline before the remaining instance is revealed online. This models the case in practice where yesterday's data is available and is similar to today's online instance. This sample is drawn from a known distribution which may not be uniform. We design an online algorithm with strong theoretical guarantees. The algorithm has a small constant competitive ratio when the sample is uniform---if not, we show we can recover the same result by adding a provably minimal sample. Empirical results validate the theory and show that such algorithms can be used on temporal data to obtain strong results. 
    more » « less