Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Maraging steels are known for their exceptional strength but suffer from limited work hardening and ductility. Here, we report an intermittent printing approach to tailor the microstructure and mechanical properties of maraging 250 steel via engineering of the thermal history during plasma arc additive manufacturing (PAAM). Through introducing a dwell time between adjacent layers, the maraging 250 steel is cooled below the martensite start temperature, triggering a thermally driven, in-situ martensitic transformation during the printing process. Re-heating or thermal cycling during subsequent layer deposition impedes complete martensitic transformation, enabling coexistence of martensite and retained austenite phases with elemental segregation. The enrichment of Ni in the austenite phase promotes stabilization of the retained austenite upon cooling down to room temperature. The retained austenite is yet metastable during deformation, leading to stress-induced martensitic transformation under loading. Specifically, a 3 min interlayer dwell time produces a maraging 250 steel with approximately 8% retained austenite, resulting in improved work hardening via martensitic transformation induced plasticity (TRIP) during deformation. Meanwhile, the higher cooling rate induced by the dwell time results in substantially refined grain structures with an increased dislocation density, leading to a simultaneously improved yield strength. Notably, the yield strength increases from 836 MPa (0 min dwell) to 990 MPa (3 min dwell), and the uniform elongation increases from 3.2% (0 min dwell) to 6.5% (3 min dwell). This intermittent deposition strategy demonstrates the potential to tune the microstructure and mechanical properties of maraging steels through engineering the thermal history during additive manufacturing.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Abstract The far-from-equilibrium solidification during additive manufacturing often creates large residual stresses that induce solid-state cracking. Here we present a strategy to suppress solid-state cracking in an additively manufactured AlCrFe2Ni2high-entropy alloy via engineering phase transformation pathway. We investigate the solidification microstructures formed during laser powder-bed fusion and directed energy deposition, encompassing a broad range of cooling rates. At high cooling rates (104−106 K/s), we observe a single-phase BCC/B2 microstructure that is susceptible to solid-state cracking. At low cooling rates (102−104 K/s), FCC phase precipitates out from the BCC/B2 matrix, resulting in enhanced ductility (~10 %) and resistance to solid-state cracking. Site-specific residual stress/strain analysis reveals that the ductile FCC phase can largely accommodate residual stresses, a feature which helps relieve residual strains within the BCC/B2 phase to prevent cracking. Our work underscores the value of exploiting the toolbox of phase transformation pathway engineering for material design during additive manufacturing.
Free, publicly-accessible full text available December 1, 2025 -
Abstract Laser powder-bed fusion (L-PBF) additive manufacturing presents ample opportunities to produce net-shape parts. The complex laser-powder interactions result in high cooling rates that often lead to unique microstructures and excellent mechanical properties. Refractory high-entropy alloys show great potential for high-temperature applications but are notoriously difficult to process by additive processes due to their sensitivity to cracking and defects, such as un-melted powders and keyholes. Here, we present a method based on a normalized model-based processing diagram to achieve a nearly defect-free TiZrNbTa alloy via in-situ alloying of elemental powders during L-PBF. Compared to its as-cast counterpart, the as-printed TiZrNbTa exhibits comparable mechanical properties but with enhanced elastic isotropy. This method has good potential for other refractory alloy systems based on in-situ alloying of elemental powders, thereby creating new opportunities to rapidly expand the collection of processable refractory materials via L-PBF.
Free, publicly-accessible full text available December 1, 2025 -
Free, publicly-accessible full text available June 1, 2025
-
Free, publicly-accessible full text available June 1, 2025
-
Compared with traditional half-duplex wireless systems, the application of emerging full-duplex (FD) technology can potentially double the system capacity theoretically. However, conventional techniques for suppressing self-interference (SI) adopted in FD systems require exceedingly high power consumption and expensive hardware. In this paper, we consider employing an intelligent reflecting surface (IRS) in the proximity of an FD base station (BS) to mitigate SI for simultaneously receiving data from uplink users and transmitting information to downlink users. The objective considered is to maximize the system weighted sum-rate by jointly optimizing the IRS phase shifts, the BS transmit beamformers, and the transmit power of the uplink users. To visualize the role of the IRS in SI cancellation, we first study a simple scenario with one downlink user and one uplink user. To address the formulated non-convex problem, a low-complexity algorithm based on successive convex approximation is proposed. For the more general case considering multiple downlink and uplink users, an efficient alternating optimization algorithm based on element-wise optimization is proposed. Numerical results demonstrate that the FD system with the proposed schemes can achieve a larger gain over the half-duplex system, and the IRS is able to achieve a balance between suppressing SI and providing beamforming gain.more » « lessFree, publicly-accessible full text available May 1, 2025
-
Free, publicly-accessible full text available May 10, 2025
-
Abstract Recent research in multi-principal element alloys (MPEAs) has increasingly focused on the role of short-range order (SRO) on material performance. However, the mechanisms of SRO formation and its precise control remain elusive, limiting the progress of SRO engineering. Here, leveraging advanced additive manufacturing techniques that produce samples with a wide range of cooling rates (up to 107 K s−1) and an enhanced semi-quantitative electron microscopy method, we characterize SRO in three CoCrNi-based face-centered-cubic (FCC) MPEAs. Surprisingly, irrespective of the processing and thermal treatment history, all samples exhibit similar levels of SRO. Atomistic simulations reveal that during solidification, prevalent local chemical order arises in the liquid-solid interface (solidification front) even under the extreme cooling rate of 1011 K s−1. This phenomenon stems from the swift atomic diffusion in the supercooled liquid, which matches or even surpasses the rate of solidification. Therefore, SRO is an inherent characteristic of most FCC MPEAs, insensitive to variations in cooling rates and even annealing treatments typically available in experiments.
-
In this paper, an intelligent reflecting surface (IRS) is leveraged to enhance the physical layer security of an integrated sensing and communication (ISAC) system in which the IRS is deployed to not only assist the downlink communication for multiple users, but also create a virtual line-of-sight (LoS) link for target sensing. In particular, we consider a challenging scenario where the target may be a suspicious eavesdropper that potentially intercepts the communication-user information transmitted by the base station (BS). To ensure the sensing quality while preventing the eavesdropping, dedicated sensing signals are transmitted by the BS. We investigate the joint design of the phase shifts at the IRS and the communication as well as radar beamformers at the BS to maximize the sensing beampattern gain towards the target, subject to the maximum information leakage to the eavesdropping target and the minimum signal-to-interference-plus-noise ratio (SINR) required by users. Based on the availability of perfect channel state information (CSI) of all involved user links and the potential target location of interest at the BS, two scenarios are considered and two different optimization algorithms are proposed. For the ideal scenario where the CSI of the user links and the potential target location are perfectly known at the BS, a penalty-based algorithm is proposed to obtain a high-quality solution. In particular, the beamformers are obtained with a semi-closed-form solution using Lagrange duality and the IRS phase shifts are solved for in closed form by applying the majorization-minimization (MM) method. On the other hand, for the more practical scenario where the CSI is imperfect and the potential target location is uncertain in a region of interest, a robust algorithm based on the $\cal S$ -procedure and sign-definiteness approaches is proposed. Simulation results demonstrate the effectiveness of the proposed scheme in achieving a trade-off between the communication quality and the sensing quality, and also show the tremendous potential of IRS for use in sensing and improving the security of ISAC systems.more » « less
-
Abstract Atmospheric rivers (ARs) reaching high-latitudes in summer contribute to the majority of climatological poleward water vapor transport into the Arctic. This transport has exhibited long term changes over the past decades, which cannot be entirely explained by anthropogenic forcing according to ensemble model responses. Here, through observational analyses and model experiments in which winds are adjusted to match observations, we demonstrate that low-frequency, large-scale circulation changes in the Arctic play a decisive role in regulating AR activity and thus inducing the recent upsurge of this activity in the region. It is estimated that the trend in summertime AR activity may contribute to 36% of the increasing trend of atmospheric summer moisture over the entire Arctic since 1979 and account for over half of the humidity trends in certain areas experiencing significant recent warming, such as western Greenland, northern Europe, and eastern Siberia. This indicates that AR activity, mostly driven by strong synoptic weather systems often regarded as stochastic, may serve as a vital mechanism in regulating long term moisture variability in the Arctic.