skip to main content

Search for: All records

Creators/Authors contains: "Chen, Wen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work is to present a learning observer-based method for simultaneous detection and estimation of false data injection attacks (FDIAs) to the cyber-physical battery systems. The original battery system in a state-space formulation is transformed into two separate subsystems: one contains both disturbances and the FDIAs and the second one is free from disturbances but subject to FDIAs. A learning observer is then designed for the second subsystem such that the FDIA signals can be estimated and further detected without being affected by the disturbances. This makes the proposed learning observer-based detection and estimation method is robust to disturbances and false declaration of FDIAs can be avoided. Another advantage of the proposed method is that the computing load is low because of the design of a reduced-order learning observer. With a three-cell battery string, a simulation study is employed to verify the effectiveness of proposed detection and estimation method for the FDIAs. 
    more » « less
  2. Free, publicly-accessible full text available June 14, 2024
  3. Free, publicly-accessible full text available May 1, 2024
  4. Free, publicly-accessible full text available May 1, 2024
  5. Abstract Population growth, urbanization, and decarbonization efforts are collectively straining the supply of limited resources that are necessary to produce batteries, electronics, chemicals, fertilizers, and other important products. Securing the supply chains of these critical resources via the development of separation technologies for their recovery represents a major global challenge to ensure stability and security. Surface water, groundwater, and wastewater are emerging as potential new sources to bolster these supply chains. Recently, a variety of material‐based technologies have been developed and employed for separations and resource recovery in water. Judicious selection and design of these materials to tune their properties for targeting specific solutes is central to realizing the potential of water as a source for critical resources. Here, the materials that are developed for membranes, sorbents, catalysts, electrodes, and interfacial solar steam generators that demonstrate promise for applications in critical resource recovery are reviewed. In addition, a critical perspective is offered on the grand challenges and key research directions that need to be addressed to improve their practical viability. 
    more » « less
  6. Abstract

    The wind-driven meridional overturning circulation between the tropical and subtropical oceans is important for regulating decadal-scale temperature fluctuations in the Pacific Ocean and globally. An acceleration of the overturning circulation can act to reduce global surface temperature as ocean stores more heat. The equatorward low-latitude western boundary current represents a key component of the meridional circulation cell in the Pacific and a major source of water mass for the Equatorial Undercurrent, yet long-term observations of its transport are scarce. Here we demonstrate that the15N/14N ratio recorded byPoritesspp. corals in the western tropical South Pacific is sensitive to the exchanges of water masses driven by the western boundary transport. Using a 94-year coral record from the Solomon Sea, we report that the15N/14N ratio declined as the global surface temperature rose. The record suggests that the South Pacific western boundary current has strengthened in the past century, and it may have contributed to the reported strengthening of the Equatorial Undercurrent. In addition, the15N/14N record shows strong decadal variability, indicative of weaker equatorial Pacific upwelling and stronger western boundary transport when the eastern equatorial Pacific is in the warm stage of the Pacific Decadal Oscillation.

    more » « less
  7. The neuroscience of music and music-based interventions (MBIs) is a fascinating but challenging research field. While music is a ubiquitous component of every human society, MBIs may encompass listening to music, performing music, music-based movement, undergoing music education and training, or receiving treatment from music therapists. Unraveling the brain circuits activated and influenced by MBIs may help us gain better understanding of the therapeutic and educational values of MBIs by gathering strong research evidence. However, the complexity and variety of MBIs impose unique research challenges. This article reviews the recent endeavor led by the National Institutes of Health to support evidence-based research of MBIs and their impact on health and diseases. It also highlights fundamental challenges and strategies of MBI research with emphases on the utilization of animal models, human brain imaging and stimulation technologies, behavior and motion capturing tools, and computational approaches. It concludes with suggestions of basic requirements when studying MBIs and promising future directions to further strengthen evidence-based research on MBIs in connections with brain circuitry. SIGNIFICANCE STATEMENT Music and music-based interventions (MBI) engage a wide range of brain circuits and hold promising therapeutic potentials for a variety of health conditions. Comparative studies using animal models have helped in uncovering brain circuit activities involved in rhythm perception, while human imaging, brain stimulation, and motion capture technologies have enabled neural circuit analysis underlying the effects of MBIs on motor, affective/reward, and cognitive function. Combining computational analysis, such as prediction method, with mechanistic studies in animal models and humans may unravel the complexity of MBIs and their effects on health and disease. 
    more » « less
  8. Free, publicly-accessible full text available August 1, 2024