skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chester, Mikhail"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 31, 2026
  2. Abstract Wildfires and post-fire debris flows (PFDFs) threaten California infrastructure and are evolving with climate change. There is significant focus on the threat of utility-caused wildfires because electric power equipment has triggered wildfires leading to major damage. California’s ambitious climate targets rely on electrification of transport and industry. As the state modernizes its electricity system to support increased demand, it must consider future climate hazards. To date, there is no rigorous characterization of the intersection of future fire threat, PFDFs, and electrical infrastructure. We estimate wildfire and PFDF threat to transmission lines, substations, and power generators in California and assess vulnerability of electric utilities by intersecting electrical infrastructure and current and future wildfire and PFDF threat, using two global climate models and two representative concentration pathways. We find clean, dispatchable power generators (e.g. hydroelectric and nuclear) and small, publicly-owned utilities are most vulnerable. Increasing threats will require additional resources and consideration of future threat distribution. 
    more » « less
    Free, publicly-accessible full text available March 4, 2026
  3. Free, publicly-accessible full text available November 1, 2025
  4. Free, publicly-accessible full text available January 1, 2026
  5. Abstract Extreme weather-related events are showing how infrastructure disruptions in hinterlands can affect cities. This paper explores the risks to city infrastructure services including transportation, electricity, communication, fuel supply, water distribution, stormwater drainage, and food supply from hinterland hazards of fire, precipitation, post-fire debris flow, smoke, and flooding. There is a large and growing body of research that describes the vulnerabilities of infrastructures to climate hazards, yet this work has not systematically acknowledged the relationships and cross-governance challenges of protecting cities from remote disruptions. An evidence base is developed through a structured literature review that identifies city infrastructure vulnerabilities to hinterland hazards. Findings highlight diverse pathways from the initial hazard to the final impact on an infrastructure, demonstrating that impacts to hinterland infrastructure assets from hazards can cascade to city infrastructure. Beyond the value of describing the impact of hinterland hazards on urban infrastructure, the identified pathways can assist in informing cross-governance mitigation strategies. It may be the case that to protect cities, local governments invest in mitigating hazards in their hinterlands and supply chains. 
    more » « less
  6. Abstract Disruption of legacy infrastructure systems by novel digital and connected technologies represents not simply the rise of cyberphysical systems as hybrid physical and digital assets but, ultimately, the integration of legacy systems into a new cognitive ecosystem. This cognitive ecosystem, an ecology of massive data flows, artificial intelligence, institutional and intellectual structures, and connected technologies, is poised to alter how humans and artificial intelligence understand and control our world. Infrastructure managers need to be ready for this paradigm shift, recognizing their systems are increasingly being absorbed into an emerging suite of data, analytical tools, and decisionmaking technologies that will fundamentally restructure how legacy systems behave and are controlled, how decisions are made, and most importantly how workers interact with the systems. Infrastructure managers must restructure their organizations and engage in cross-organizational sensemaking if they are to be capable of navigating the complexity of the cognitive ecosystem. The cognitive ecosystem is fundamentally poised to change what infrastructures are, necessitating the need for managers to take a close look at the functions and actions of their own systems. The continuing evolution of the Anthropocene and the cognitive ecosystem has profound implications for infrastructure education. A sustained commitment to change is necessary that restructures and reorients infrastructure organizations within the cognitive ecosystem, where knowledge is generated, and control of services is wielded by myriad stakeholders. 
    more » « less
  7. Abstract Infrastructure systems have legacies that continue to define their priorities, goals, flexibility, and ability to make sense of their environments. These legacies may or may not align with future needs, but regardless of alignment, they may restrict viable pathways forward. Infrastructure ‘lock-in’ has not been sufficiently confronted in infrastructure systems. Lock-in can loosely be interpreted as internal and external pressures that constrain a system, and it encourages self-reinforcing feedback where the system becomes resistant to change. By acknowledging and recognizing that lock-in exists at small and large scales, perpetuated by individuals, organizations, and institutions, infrastructure managers can critically reflect upon biases, assumptions, and decision-making approaches. This article describes six distinct domains of lock-in: technological, social, economic, individual, institutional, and epistemic. Following this description, strategies for unlocking lock-in, broadly and by domain, are explored before being contextualized to infrastructure systems. Ultimately, infrastructure managers must make a decision between a locked in and faltering but familiar system or a changing and responsive but unfamiliar system, where both are, inevitably, accepting higher levels of risk than typically accustomed. 
    more » « less
  8. Abstract Complex adaptive systems – such as critical infrastructures (CI) – are defined by their vast, multi-level interactions and emergent behaviors, but this elaborate web of interactions often conceals relationships. For instance, CI is often reduced to technological components, ignoring that social and ecological components are also embedded, leading to unintentional consequences from disturbance events. Analysis of CI as social-ecological-technological systems (SETS) can support integrated decision-making and increase infrastructure’s capacity for resilience to climate change. We assess the impacts of an extreme precipitation event in Phoenix, AZ to identify pathways of disruption and feedback loops across SETS as presented in an illustrative causal loop diagram, developed through semi-structured interviews with researchers and practitioners and cross-validated with a literature review. The causal loop diagram consists of 19 components resulting in hundreds of feedback loops and cascading failures, with surface runoff, infiltration, and water bodies as well as power, water, and transportation infrastructures appearing to have critical roles in maintaining system services. We found that pathways of disruptions highlight potential weak spots within the system that could benefit from climate adaptation, and feedback loops may serve as potential tools to divert failure at the root cause. This method of convergence research shows potential as a useful tool to illustrate a broader perspective of urban systems and address the increasing complexity and uncertainty of the Anthropocene. 
    more » « less
  9. Abstract Faced with destabilizing conditions in the Anthropocene, infrastructure resilience modeling remains challenged to confront increasingly complex conditions toward quickly and meaningfully advancing adaptation. Data gaps, increasingly interconnected systems, and accurate behavior estimation (across scales and as both gradual and cascading failure) remain challenges for infrastructure modelers. Yet novel approaches are emerging—largely independently—that, if brought together, offer significant opportunities for rapidly advancing how we understand vulnerabilities and surgically invest in resilience. Of particular promise are interdependency modeling, cascading failure modeling, and synthetic network generation. We describe a framework for integrating these three domains toward an integrated modeling framework to estimate infrastructure networks where no data exist, connect infrastructure to establish interdependencies, assess the vulnerabilities of these interconnected infrastructure to hazards, and simulate how failures may propagate across systems. We draw from the literature as an evidence base, provide a conceptual structure for implementation, and conclude by discussing the significance of such a framework and the critical tools it may provide to infrastructure researchers and managers. 
    more » « less