Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Exact laws for evaluating cascade rates, tracing back to the Kolmogorov “4/5” law, have been extended to many systems of interest including magnetohydrodynamics (MHD), and compressible flows of the magnetofluid and ordinary fluid types. It is understood that implementations may be limited by the quantity of available data and by the lack of turbulence symmetry. Assessment of the accuracy and feasibility of such third-order (or Yaglom) relations is most effectively accomplished by examining the von Kármán–Howarth equation in increment form, a framework from which the third-order laws are derived as asymptotic approximations. Using this approach, we examine the context of third-order laws for incompressible MHD in some detail. The simplest versions rely on the assumption of isotropy and the presence of a well-defined inertial range, while related procedures generalize the same idea to arbitrary rotational symmetries. Conditions for obtaining correct and accurate values of the dissipation rate from these laws based on several sampling and fitting strategies are investigated using results from simulations. The questions we address are of particular relevance to sampling of solar wind turbulence by one or more spacecraft.more » « less
-
null (Ed.)Unlike the vast majority of astrophysical plasmas, the solar wind is accessible to spacecraft, which for decades have carried in-situ instruments for directly measuring its particles and fields. Though such measurements provide precise and detailed information, a single spacecraft on its own cannot disentangle spatial and temporal fluctuations. Even a modest constellation of in-situ spacecraft, though capable of characterizing fluctuations at one or more scales, cannot fully determine the plasma’s 3-D structure. We describe here a concept for a new mission, the Magnetic Topology Reconstruction Explorer (MagneToRE), that would comprise a large constellation of in-situ spacecraft and would, for the first time, enable 3-D maps to be reconstructed of the solar wind’s dynamic magnetic structure. Each of these nanosatellites would be based on the CubeSat form-factor and carry a compact fluxgate magnetometer. A larger spacecraft would deploy these smaller ones and also serve as their telemetry link to the ground and as a host for ancillary scientific instruments. Such an ambitious mission would be feasible under typical funding constraints thanks to advances in the miniaturization of spacecraft and instruments and breakthroughs in data science and machine learning.more » « less
-
This white paper is on the HMCS Firefly mission concept study. Firefly focuses on the global structure and dynamics of the Sun's interior, the generation of solar magnetic fields, the deciphering of the solar cycle, the conditions leading to the explosive activity, and the structure and dynamics of the corona as it drives the heliosphere.more » « less