skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chi, Lequan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract The path of the Gulf Stream as it leaves the continental shelf near Cape Hatteras is marked by a sharp gradient in ocean temperature known as the North Wall. The latitude location of the Gulf Stream North Wall (GSNW) has previously been estimated by subjective analysis of daily maps of sea surface temperatures. Recently, Watelet et al. (2017) presented an objective procedure by fitting an error function to the SST profile across the Gulf Stream at 81 longitude positions. The fit smooths over not only the GSNW but also the much colder waters from the Labrador Sea on the continental shelf. Watelet et al.’s procedure is therefore likely to misidentify the shelf-slope front as the Gulf Stream North Wall, leading to a systematic northward bias the in North Wall position. 
    more » « less
  2. Abstract Downstream of Cape Hatteras, the Gulf Stream (GS) is bounded to the north by a sharp temperature front known as the North Wall (NW). Previous studies have generally assumed that variations of the NW and GS are equivalent. Using satellite sea surface height to identify the GS and the 15 °C isotherm at 200‐m depth to represent the NW, this paper examines their similarities and differences during 1993–2016. The NW and GS are geographically close and vary similarly only to the west of 71°W. Downstream of that, they rapidly diverge—and the variances of their latitudes increase by more than a factor of 2—as the GS flows past the New England Seamounts. Evidence is presented to show that the difference in properties of the NW and the GS is related to the presence of mesoscale eddies in the region separating them. 
    more » « less
  3. The Gulf Stream is bounded to the north by a strong temperature front known as the North Wall. The North Wall is subject to variability on a wide range of temporal and spatial scales—on interannual time scales, the dominant mode of variability is a longitudinally coherent north–south migration. North Wall variability since 1970 has been characterized by regular oscillations with a period of approximately nine years. This periodic variability, and its relationship to major modes of Atlantic climate variability, is examined in the frequency domain. The North Atlantic Oscillation (NAO) and the Atlantic meridional mode (AMM) both covary with the North Wall on decadal time scales. The NAO leads the North Wall by about one year, whereas the covariability between the North Wall and the AMM is synchronous (no lag). Covariability between the North Wall and the NAO is further examined in terms of the centers of action comprising the NAO: the Icelandic low and Azores high. It is found that the strength of the Icelandic low and its latitude as well as the strength of the Azores high play a role in decadal North Wall variability. 
    more » « less