skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chirvasitu, Alexandru"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. An extended derivation (endomorphism) of a (restricted) Lie algebra L L is an assignment of a derivation (respectively) of L L’ for any (restricted) Lie morphism f : L →<#comment/> L f:L\to L’ , functorial in f f in the obvious sense. We show that (a) the only extended endomorphisms of a restricted Lie algebra are the two obvious ones, assigning either the identity or the zero map of L L’ to every f f ; and (b) if L L is a Lie algebra in characteristic zero or a restricted Lie algebra in positive characteristic, then L L is in canonical bijection with its space of extended derivations (so the latter are all, in a sense, inner). These results answer a number of questions of G. Bergman. In a similar vein, we show that the individual components of an extended endomorphism of a compact connected group are either all trivial or all inner automorphisms. 
    more » « less
  3. We prove a number of results on the survival of the type-I property under extensions of locally compact groups: (a) that given a closed normal embedding N ⊴<#comment/> E \mathbb {N}\trianglelefteq \mathbb {E} of locally compact groups and a twisted action ( α<#comment/> , τ<#comment/> ) (\alpha ,\tau ) thereof on a (post)liminal C ∗<#comment/> C^* -algebra A A the twisted crossed product A ⋊<#comment/> α<#comment/> , τ<#comment/> E A\rtimes _{\alpha ,\tau }\mathbb {E} is again (post)liminal and (b) a number of converses to the effect that under various conditions a normal, closed, cocompact subgroup N ⊴<#comment/> E \mathbb {N}\trianglelefteq \mathbb {E} is type-I as soon as E \mathbb {E} is. This happens for instance if N \mathbb {N} is discrete and E \mathbb {E} is Lie, or if N \mathbb {N} is finitely-generated discrete (with no further restrictions except cocompactness). Examples show that there is not much scope for dropping these conditions. In the same spirit, call a locally compact group G \mathbb {G} type-I-preserving if all semidirect products N ⋊<#comment/> G \mathbb {N}\rtimes \mathbb {G} are type-I as soon as N \mathbb {N} is, andlinearlytype-I-preserving if the same conclusion holds for semidirect products V ⋊<#comment/> G V\rtimes \mathbb {G} arising from finite-dimensional G \mathbb {G} -representations. We characterize the (linearly) type-I-preserving groups that are (1) discrete-by-compact-Lie, (2) nilpotent, or (3) solvable Lie. 
    more » « less
  4. We prove a number of results having to do with equipping type-I\mathrm{C}^*-algebras with compact quantum group structures, the two main ones being that such a compact quantum group is necessarily co-amenable, and that if the\mathrm{C}^*-algebra in question is an extension of a non-zero finite direct sum of elementary\mathrm{C}^*-algebras by a commutative unital\mathrm{C}^*-algebra then it must be finite-dimensional. 
    more » « less