We study regularity of solutions to on a relatively compact domain in a complex manifold of dimension , where is a form. Assume that there are either negative or positive Levi eigenvalues at each point of boundary . Under the necessary condition that a locally solution exists on the domain, we show the existence of the solutions on the closure of the domain that gain derivative when and is in the Hölder–Zygmund space with . For , the same regularity for the solutions is achieved when is either sufficiently smooth or of positive Levi eigenvalues everywhere on . 
                        more » 
                        « less   
                    
                            
                            Naturality and innerness for morphisms of compact groups and (restricted) Lie algebras
                        
                    
    
            An extended derivation (endomorphism) of a (restricted) Lie algebra is an assignment of a derivation (respectively) of for any (restricted) Lie morphism , functorial in in the obvious sense. We show that (a) the only extended endomorphisms of a restricted Lie algebra are the two obvious ones, assigning either the identity or the zero map of to every ; and (b) if is a Lie algebra in characteristic zero or a restricted Lie algebra in positive characteristic, then is in canonical bijection with its space of extended derivations (so the latter are all, in a sense, inner). These results answer a number of questions of G. Bergman. In a similar vein, we show that the individual components of an extended endomorphism of a compact connected group are either all trivial or all inner automorphisms. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2001128
- PAR ID:
- 10548382
- Publisher / Repository:
- Proceedings of the American Mathematical Society. Series B
- Date Published:
- Journal Name:
- Proceedings of the American Mathematical Society, Series B
- Volume:
- 11
- Issue:
- 25
- ISSN:
- 2330-1511
- Page Range / eLocation ID:
- 265 to 276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Suppose is a -finite and -pure -Gorenstein local ring of prime characteristic . We show that an ideal is uniformly compatible ideal (with all -linear maps) if and only if exists a module finite ring map such that the ideal is the sum of images of all -linear maps . In other words, the set of uniformly compatible ideals is exactly the set of trace ideals of finite ring maps.more » « less
- 
            We prove a single-value version of Reshetnyak’s theorem. Namely, if a non-constant map from a domain satisfies the estimate at almost every for some , and , then is discrete, the local index is positive in , and every neighborhood of a point of is mapped to a neighborhood of . Assuming this estimate for a fixed at every is equivalent to assuming that the map is -quasiregular, even if the choice of is different for each . Since the estimate also yields a single-value Liouville theorem, it hence appears to be a good pointwise definition of -quasiregularity. As a corollary of our single-value Reshetnyak’s theorem, we obtain a higher-dimensional version of the argument principle that played a key part in the solution to the Calderón problem.more » « less
- 
            We show that for primes with , the class number of is divisible by . Our methods are via congruences between Eisenstein series and cusp forms. In particular, we show that when , there is always a cusp form of weight and level whose th Fourier coefficient is congruent to modulo a prime above , for all primes . We use the Galois representation of such a cusp form to explicitly construct an unramified degree- extension of .more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    