Suppose is a -finite and -pure -Gorenstein local ring of prime characteristic . We show that an ideal is uniformly compatible ideal (with all -linear maps) if and only if exists a module finite ring map such that the ideal is the sum of images of all -linear maps . In other words, the set of uniformly compatible ideals is exactly the set of trace ideals of finite ring maps.
more »
« less
This content will become publicly available on July 1, 2025
Naturality and innerness for morphisms of compact groups and (restricted) Lie algebras
An extended derivation (endomorphism) of a (restricted) Lie algebra is an assignment of a derivation (respectively) of for any (restricted) Lie morphism , functorial in in the obvious sense. We show that (a) the only extended endomorphisms of a restricted Lie algebra are the two obvious ones, assigning either the identity or the zero map of to every ; and (b) if is a Lie algebra in characteristic zero or a restricted Lie algebra in positive characteristic, then is in canonical bijection with its space of extended derivations (so the latter are all, in a sense, inner). These results answer a number of questions of G. Bergman. In a similar vein, we show that the individual components of an extended endomorphism of a compact connected group are either all trivial or all inner automorphisms.
more »
« less
- Award ID(s):
- 2001128
- PAR ID:
- 10548382
- Publisher / Repository:
- Proceedings of the American Mathematical Society. Series B
- Date Published:
- Journal Name:
- Proceedings of the American Mathematical Society, Series B
- Volume:
- 11
- Issue:
- 25
- ISSN:
- 2330-1511
- Page Range / eLocation ID:
- 265 to 276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We show that for primes with , the class number of is divisible by . Our methods are via congruences between Eisenstein series and cusp forms. In particular, we show that when , there is always a cusp form of weight and level whose th Fourier coefficient is congruent to modulo a prime above , for all primes . We use the Galois representation of such a cusp form to explicitly construct an unramified degree- extension of .more » « less
-
If is an ideal in a Gorenstein ring , and is Cohen-Macaulay, then the same is true for any linked ideal ; but such statements hold for residual intersections of higher codimension only under restrictive hypotheses, not satisfied even by ideals as simple as the ideal of minors of a generic matrix when . In this paper we initiate the study of a different sort of Cohen-Macaulay property that holds for certain general residual intersections of the maximal (interesting) codimension, one less than the analytic spread of . For example, suppose that is the residual intersection of by general quadratic forms in . In this situation we analyze and show that is a self-dual maximal Cohen-Macaulay -module with linear free resolution over . The technical heart of the paper is a result about ideals of analytic spread 1 whose high powers are linearly presented.more » « less
-
Let be a regular covering of a surface of finite type with nonempty boundary, with finitely-generated (possibly infinite) deck group . We give necessary and sufficient conditions for an integral homology class on to admit a representative as a connected component of the preimage of a nonseparating simple closed curve on , possibly after passing to a “stabilization”, i.e. a -equivariant embedding of covering spaces .more » « less
-
Let be a commutative algebra equipped with an action of a group . The so-called -primes of are the equivariant analogs of prime ideals, and of central importance in equivariant commutative algebra. When is an infinite dimensional group, these ideals can be very subtle: for instance, distinct -primes can have the same radical. In previous work, the second author showed that if and is a polynomial representation, then these pathologies disappear when is replaced with the supergroup and with a corresponding algebra; this leads to a geometric description of -primes of . In the present paper, we construct an abstract framework around this result, and apply the framework to prove analogous results for other (super)groups. We give some applications to the isomeric determinantal ideals (commonly known as “queer determinantal ideals”).more » « less