Optical spectropolarimetry of the normal thermonuclear supernova (SN) 2019np from −14.5 to +14.5 d relative to B-band maximum detected an intrinsic continuum polarization (pcont) of 0.21 ± 0.09 per cent at the first epoch. Between days −11.5 and +0.5, pcont remained ∼0 and by day +14.5 was again significant at 0.19 ± 0.10 per cent. Not considering the first epoch, the dominant axis of ${\rm Si\, {\small II}}$ λ6355 was roughly constant staying close the continuum until both rotated in opposite directions on day +14.5. Detailed radiation-hydrodynamical simulations produce a very steep density slope in the outermost ejecta so that the low first-epoch pcont ≈ 0.2 per cent nevertheless suggests a separate structure with an axis ratio ∼2 in the outer carbon-rich (3.5–4) × 10−3 M⊙. Large-amplitude fluctuations in the polarization profiles and a flocculent appearance of the polar diagram for the ${\rm Ca\, {\small II}}$ near-infrared triplet (NIR3) may be related by a common origin. The temporal evolution of the polarization spectra agrees with an off-centre delayed detonation. The late-time increase in polarization and the possible change in position angle are also consistent with an aspherical 56Ni core. The pcont and the absorptions due to ${\rm Si\, {\small II}}$ λ6355 and ${\rm Ca\, {\small II}}$ NIR3 formmore »
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT -
ABSTRACT Some highly reddened Type Ia supernovae (SNe Ia) display low total-to-selective extinction ratios (RV ≲ 2) in comparison to that of typical Milky Way dust (RV ≈ 3.3), and polarization curves that rise steeply to blue wavelengths, with peak polarization values at short wavelengths ($\lambda _{\rm max} \lt 0.4\, \mu$m) in comparison to the typical Galactic values ($\lambda _{\rm max} \approx 0.55\, \mu$ m). Understanding the source of these properties could provide insight into the progenitor systems of SNe Ia. We aim to determine whether they are the result of the host galaxy’s interstellar dust or circumstellar dust. This is accomplished by analysing the continuum polarization of 66 SNe Ia in dust-rich spiral galaxies and 13 SNe Ia in dust-poor elliptical galaxies as a function of normalized galactocentric distance. We find that there is a general trend of SNe Ia in spiral galaxies displaying increased polarization values when located closer to the host galaxies’ centre, while SNe Ia in elliptical host galaxies display low polarization. Furthermore, all highly polarized SNe Ia in spiral host galaxies display polarization curves rising toward blue wavelengths, while no evidence of such polarization properties is shown in elliptical host galaxies. This indicates that the source of the peculiar polarizationmore »
-
ABSTRACT Detailed spectropolarimetric studies may hold the key to probing the explosion mechanisms and the progenitor scenarios of Type Ia supernovae (SNe Ia). We present multi-epoch spectropolarimetry and imaging polarimetry of SN 2019ein, an SN Ia showing high expansion velocities at early phases. The spectropolarimetry sequence spans from ∼−11 to +10 d relative to peak brightness in the B band. We find that the level of the continuum polarization of SN 2019ein, after subtracting estimated interstellar polarization, is in the range 0.0–0.3 per cent, typical for SNe Ia. The polarization position angle remains roughly constant before and after the SN light-curve peak, implying that the inner regions share the same axisymmetry as the outer layers. We observe high polarization (∼1 per cent) across both the Si ii λ6355 and Ca ii near-infrared triplet features. These two lines also display complex polarization modulations. The spectropolarimetric properties of SN 2019ein rule out a significant departure from spherical symmetry of the ejecta for up to a month after the explosion. These observations disfavour merger-induced and double-detonation models for SN 2019ein. The imaging polarimetry shows weak evidence for a modest increase in polarization after ∼20 d since the B-band maximum. If this rise is real and is observed in other SNe Ia at similar phases, we may havemore »
-
Abstract We present observations of SN 2021csp, the second example of a newly identified type of supernova (SN) hallmarked by strong, narrow, P Cygni carbon features at early times (Type Icn). The SN appears as a fast and luminous blue transient at early times, reaching a peak absolute magnitude of −20 within 3 days due to strong interaction between fast SN ejecta ( v ≈ 30,000 km s −1 ) and a massive, dense, fast-moving C/O wind shed by the WC-like progenitor months before explosion. The narrow-line features disappear from the spectrum 10–20 days after explosion and are replaced by a blue continuum dominated by broad Fe features, reminiscent of Type Ibn and IIn supernovae and indicative of weaker interaction with more extended H/He-poor material. The transient then abruptly fades ∼60 days post-explosion when interaction ceases. Deep limits at later phases suggest minimal heavy-element nucleosynthesis, a low ejecta mass, or both, and imply an origin distinct from that of classical Type Ic SNe. We place SN 2021csp in context with other fast-evolving interacting transients, and discuss various progenitor scenarios: an ultrastripped progenitor star, a pulsational pair-instability eruption, or a jet-driven fallback SN from a Wolf–Rayet (W-R) star. The fallback scenariomore »
-
The non-detection of companion stars in Type Ia supernova (SN) progenitor systems lends support to the notion of double-degenerate (DD) systems and explosions triggered by the merging of two white dwarfs. This very asymmetric process should lead to a conspicuous polarimetric signature. By contrast, observations consistently find very low continuum polarization as the signatures from the explosion process largely dominate over the pre-explosion configuration within several days. Critical information about the interaction of the ejecta with a companion and any circumstellar matter is encoded in the early polarization spectra. In this study, we obtain spectropolarimetry of SN\,2018gv with the ESO Very Large Telescope at − 13.6 days relative to the B−band maximum light, or ∼ 5 days after the estimated explosion --- the earliest spectropolarimetric observations to date of any Type Ia SN. These early observations still show a low continuum polarization ( ≲ 0.2\%) and moderate line polarization (0.30 ± 0.04\% for the prominent \ion{Si}{2} λ6355 feature and 0.85 ± 0.04\% for the high-velocity Ca component). The high degree of spherical symmetry implied by the low line and continuum polarization at this early epoch is consistent with explosion models of delayed detonations and is inconsistent with the merger-induced explosionmore »
-
ABSTRACT Spectropolarimetry enables us to measure the geometry and chemical structure of the ejecta in supernova explosions, which is fundamental for the understanding of their explosion mechanism(s) and progenitor systems. We collected archival data of 35 Type Ia supernovae (SNe Ia), observed with Focal Reducer and Low-Dispersion Spectrograph (FORS) on the Very Large Telescope at 127 epochs in total. We examined the polarization of the Si ii λ6355 Å line ($p_{\rm Si\, \small {II}}$) as a function of time, which is seen to peak at a range of various polarization degrees and epochs relative to maximum brightness. We reproduced the $\Delta m_{15}\!-\!p_{\rm Si\, \small {II}}$ relationship identified in a previous study, and show that subluminous and transitional objects display polarization values below the $\Delta m_{15}\!-\!p_{\rm Si\, \small {II}}$ relationship for normal SNe Ia. We found a statistically significant linear relationship between the polarization of the Si ii λ6355 Å line before maximum brightness and the Si ii line velocity and suggest that this, along with the $\Delta m_{15}\!-\!p_{\rm Si\, \small {II}}$ relationship, may be explained in the context of a delayed-detonation model. In contrast, we compared our observations to numerical predictions in the $\Delta m_{15}\!-\!v_{\rm Si\, \small {II}}$ plane and found a dichotomy in the polarization propertiesmore »