Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Rambow, Owen; Wanner, Leo; Apidianaki, Marianna; Al-Khalifa, Hend; Di_Eugenio, Barbara; Schockaert, Steven (Ed.)Human tutoring interventions play a crucial role in supporting student learning, improving academic performance, and promoting personal growth. This paper focuses on analyzing mathematics tutoring discourse using talk moves—a framework of dialogue acts grounded in Accountable Talk theory. However, scaling the collection, annotation, and analysis of extensive tutoring dialogues to develop machine learning models is a challenging and resource-intensive task. To address this, we present SAGA22, a compact dataset, and explore various modeling strategies, including dialogue context, speaker information, pretraining datasets, and further fine-tuning. By leveraging existing datasets and models designed for classroom teaching, our results demonstrate that supplementary pretraining on classroom data enhances model performance in tutoring settings, particularly when incorporating longer context and speaker information. Additionally, we conduct extensive ablation studies to underscore the challenges in talk move modeling.more » « lessFree, publicly-accessible full text available January 19, 2026
-
Rambow, Owen; Wanner, Owen; Apidianaki, Marianna; Al-Khalifa, Hend; Di_Eugenio, Barbara; Schockaert, Steven (Ed.)Human tutoring interventions play a crucial role in supporting student learning, improving academic performance, and promoting personal growth. This paper focuses on analyzing mathematics tutoring discourse using talk moves—a framework of dialogue acts grounded in Accountable Talk theory. However, scaling the collection, annotation, and analysis of extensive tutoring dialogues to develop machine learning models is a challenging and resource-intensive task. To address this, we present SAGA22, a compact dataset, and explore various modeling strategies, including dialogue context, speaker information, pretraining datasets, and further fine-tuning. By leveraging existing datasets and models designed for classroom teaching, our results demonstrate that supplementary pretraining on classroom data enhances model performance in tutoring settings, particularly when incorporating longer context and speaker information. Additionally, we conduct extensive ablation studies to underscore the challenges in talk move modeling.more » « lessFree, publicly-accessible full text available January 19, 2026
-
Free, publicly-accessible full text available January 6, 2026
-
Using new technology to provide automated feedback on classroom discourse offers a unique opportunity for educators to engage in self-reflection on their teaching, in particular to ensure that the instructional environment is equitable and productive for all students. More information is needed about how teachers experience automated data tools, including what they perceive as relevant and helpful for their everyday teaching. This mixed-methods study explored the perceptions and engagement of 21 math teachers over two years with a big data tool that analyzes classroom recordings and generates information about their discourse practices in near real-time. Findings revealed that teachers perceived the tool as having utility, yet the specific feedback that teachers perceived as most useful changed over time. In addition, teachers who used the tool throughout both years increased their use of talk moves over time, suggesting that they were making changes due to their review of the personalized feedback. These findings speak to promising directions for the development of AI-based, big data tools that help shape teacher learning and instruction, particularly tools that have strong perceived utility.more » « less
-
Transcripts of teaching episodes can be effective tools to understand discourse patterns in classroom instruction. According to most educational experts, sustained classroom discourse is a critical component of equitable, engaging, and rich learning environments for students. This paper describes the TalkMoves dataset, composed of 567 human annotated K-12 mathematics lesson transcripts (including entire lessons or portions of lessons) derived from video recordings. The set of transcripts primarily includes in-person lessons with whole-class discussions and/or small group work, as well as some online lessons. All of the transcripts are human-transcribed, segmented by the speaker (teacher or student), and annotated at the sentence level for ten discursive moves based on accountable talk theory. In addition, the transcripts include utterance-level information in the form of dialogue act labels based on the Switchboard Dialog Act Corpus. The dataset can be used by educators, policymakers, and researchers to understand the nature of teacher and student discourse in K-12 math classrooms. Portions of this dataset have been used to develop the TalkMoves application, which provides teachers with automated, immediate, and actionable feedback about their mathematics instruction.more » « less
-
null (Ed.)Inclusion in mathematics education is strongly tied to discourse rich classrooms, where students ideas play a central role. Talk moves are specific discursive practices that promote inclusive and equitable participation in classroom discussions. This paper describes the development of the TalkMoves application, which provides teachers with detailed feedback on their usage of talk moves based on accountable talk theory. Building on our recent work to automate the classification of teacher talk moves, we have expanded the application to also include feedback on a set of student talk moves. We present results from several deep learning models trained to classify student sentences into student talk moves with performance up to 73% F1. The classroom data used for training these models were collected from multiple sources that were pre-processed and annotated by highly reliable experts. We validated the performance of the model on an out-of-sample dataset which included 166 classroom transcripts collected from teachers piloting the application.more » « less
An official website of the United States government

Full Text Available