skip to main content


Search for: All records

Creators/Authors contains: "Cuzzocrea, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 2, 2025
  2. Free, publicly-accessible full text available July 2, 2025
  3. With the growing adoption of unmanned aerial vehicles (UAVs) across various domains, the security of their operations is paramount. UAVs, heavily dependent on GPS navigation, are at risk of jamming and spoofing cyberattacks, which can severely jeopardize their performance, safety, and mission integrity. Intrusion detection systems (IDSs) are typically employed as defense mechanisms, often leveraging traditional machine learning techniques. However, these IDSs are susceptible to adversarial attacks that exploit machine learning models by introducing input perturbations. In this work, we propose a novel IDS for UAVs to enhance resilience against such attacks using generative adversarial networks (GAN). We also comprehensively study several evasion-based adversarial attacks and utilize them to compare the performance of the proposed IDS with existing ones. The resilience is achieved by generating synthetic data based on the identified weak points in the IDS and incorporating these adversarial samples in the training process to regularize the learning. The evaluation results demonstrate that the proposed IDS is significantly robust against adversarial machine learning based attacks compared to the state-of-the-art IDSs while maintaining a low false positive rate. 
    more » « less
    Free, publicly-accessible full text available December 15, 2024
  4. Social media cyberbullying has a detrimental effect on human life. As online social networking grows daily, the amount of hate speech also increases. Such terrible content can cause depression and actions related to suicide. This paper proposes a trustable LSTM Autoencoder Network for cyberbullying detection on social media using synthetic data. We have demonstrated a cutting-edge method to address data availability difficulties by producing machine-translated data. However, several languages such as Hindi and Bangla still lack adequate investigations due to a lack of datasets. We carried out experimental identification of aggressive comments on Hindi, Bangla, and English datasets using the proposed model and traditional models, including Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (BiLSTM), LSTM-Autoencoder, Word2vec, Bidirectional Encoder Representations from Transformers (BERT), and Generative Pre-trained Transformer 2 (GPT-2) models. We employed evaluation metrics such as f1-score, accuracy, precision, and recall to assess the models’ performance. Our proposed model outperformed all the models on all datasets, achieving the highest accuracy of 95%. Our model achieves state-of-the-art results among all the previous works on the dataset we used in this paper. 
    more » « less
    Free, publicly-accessible full text available December 15, 2024
  5. With the ever-growing concern for internet security, the field of quantum cryptography emerges as a promising solution for enhancing the security of networking systems. In this paper, 20 notable papers from leading conferences and journals are reviewed and categorized based on their focus on various aspects of quantum cryptography, including key distribution, quantum bit commitment, post-quantum cryptography, and counterfactual quantum key distribution. The paper explores the motivations and challenges of employing quantum cryptography, addressing security and privacy concerns along with existing solutions. Secure key distribution, a critical component in ensuring the confidentiality and integrity of transmitted information over a network, is emphasized in the discussion. The survey examines the potential of quantum cryptography to enable secure key exchange between parties, even when faced with eavesdropping, and other applications of quantum cryptography. Additionally, the paper analyzes the methodologies, findings, and limitations of each reviewed study, pinpointing trends such as the increasing focus on practical implementation of quantum cryptography protocols and the growing interest in post-quantum cryptography research. Furthermore, the survey identifies challenges and open research questions, including the need for more efficient quantum repeater networks, improved security proofs for continuous variable quantum key distribution, and the development of quantum-resistant cryptographic algorithms, showing future directions for the field of quantum cryptography. 
    more » « less
    Free, publicly-accessible full text available December 15, 2024
  6. One of the most significant challenges in the field of software code auditing is the presence of vulnerabilities in software source code. Every year, more and more software flaws are discovered, either internally in proprietary code or publicly disclosed. These flaws are highly likely to be exploited and can lead to system compromise, data leakage, or denial of service. To create a large-scale machine learning system for function-level vulnerability identification, we utilized a sizable dataset of C and C++ open-source code containing millions of functions with potential buffer overflow exploits. We have developed an efficient and scalable vulnerability detection method based on neural network models that learn features extracted from the source codes. The source code is first converted into an intermediate representation to remove unnecessary components and shorten dependencies. We maintain the semantic and syntactic information using state-ofthe- art word embedding algorithms such as GloVe and fastText. The embedded vectors are subsequently fed into neural networks such as LSTM, BiLSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we have proposed a neural network model that can overcome issues associated with traditional neural networks. We have used evaluation metrics such as F1 score, precision, recall, accuracy, and total execution time to measure the performance. We have conducted a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We have found that all neural network models provide higher accuracy when we use semantic and syntactic information as features. However, this approach requires more execution time due to the added complexity of the word embedding algorithm. Moreover, our proposed model provides higher accuracy than LSTM, BiLSTM, LSTM-Autoencoder, word2vec and BERT models, and the same accuracy as the GPT-2 model with greater efficiency. 
    more » « less
  7. The software supply chain (SSC) attack has become one of the crucial issues that are being increased rapidly with the advancement of the software development domain. In general, SSC attacks execute during the software development processes lead to vulnerabilities in software products targeting downstream customers and even involved stakeholders. Machine Learning approaches are proven in detecting and preventing software security vulnerabilities. Besides, emerging quantum machine learning can be promising in addressing SSC attacks. Considering the distinction between traditional and quantum machine learning, performance could be varies based on the proportions of the experimenting dataset. In this paper, we conduct a comparative analysis between quantum neural networks (QNN) and conventional neural networks (NN) with a software supply chain attack dataset known as ClaMP. Our goal is to distinguish the performance between QNN and NN and to conduct the experiment, we develop two different models for QNN and NN by utilizing Pennylane for quantum and TensorFlow and Keras for traditional respectively. We evaluated the performance of both models with different proportions of the ClaMP dataset to identify the f1 score, recall, precision, and accuracy. We also measure the execution time to check the efficiency of both models. The demonstration result indicates that execution time for QNN is slower than NN with a higher percentage of datasets. Due to recent advancements in QNN, a large level of experiments shall be carried out to understand both models accurately in our future research. 
    more » « less