skip to main content


Search for: All records

Creators/Authors contains: "Dai, X"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Algorithmic decisions made by machine learning models in high-stakes domains may have lasting impacts over time. However, naive applications of standard fairness criterion in static settings over temporal domains may lead to delayed and adverse effects. To understand the dynamics of performance disparity, we study a fairness problem in Markov decision processes (MDPs). Specifically, we propose return parity, a fairness notion that requires MDPs from different demographic groups that share the same state and action spaces to achieve approximately the same expected time-discounted rewards. We first provide a decomposition theorem for return disparity, which decomposes the return disparity of any two MDPs sharing the same state and action spaces into the distance between group-wise reward functions, the discrepancy of group policies, and the discrepancy between state visitation distributions induced by the group policies. Motivated by our decomposition theorem, we propose algorithms to mitigate return disparity via learning a shared group policy with state visitation distributional alignment using integral probability metrics. We conduct experiments to corroborate our results, showing that the proposed algorithm can successfully close the disparity gap while maintaining the performance of policies on two real-world recommender system benchmark datasets. 
    more » « less
  2. ABSTRACT We present new Large Binocular Telescope, Hubble Space Telescope, and Spitzer Space Telescope data for the failed supernova candidate N6946-BH1. We also report an unsuccessful attempt to detect the candidate with Chandra. The ∼300 000 $\, \mathrm{L}_\odot$ red supergiant progenitor underwent an outburst in 2009 and has since disappeared in the optical. In the LBT data from 2008 May through 2019 October, the upper limit on any increase in the R-band luminosity of the source is $2000 \, \mathrm{L}_\odot$. HST and Spitzer observations show that the source continued to fade in the near-IR and mid-IR, fading by approximately a factor of 2 between 2015 October and 2017 September to 2900 $\, \mathrm{L}_\odot$ at Hband (F160W). Models of the spectral energy distribution are inconsistent with a surviving star obscured either by an ongoing wind or dust formed in the transient. The disappearance of N6946-BH1 remains consistent with a failed supernova, but the post-failure phenomenology requires further theoretical study. 
    more » « less
  3. null (Ed.)
    Neuroimaging data typically undergoes several preprocessing steps before further analysis and mining can be done. Affine image registration is one of the important tasks during preprocessing. Recently, several image registration methods which are based on Convolutional Neural Networks have been proposed. However, due to the high computational and memory requirements of CNNs, these methods cannot be used in real-time for large neuroimaging data like fMRI. In this paper, we propose a Dual-Attention Recurrent Network (DRN) which uses a hard attention mechanism to allow the model to focus on small, but task-relevant, parts of the input image – thus reducing computational and memory costs. Furthermore, DRN naturally supports inhomogeneity between the raw input image (e.g., functional MRI) and the image we want to align it to (e.g., anatomical MRI) so it can be applied to harder registration tasks such as fMRI coregistration and normalization. Extensive experiments on two different datasets demonstrate that DRN significantly reduces the computational and memory costs compared with other neural network-based methods without sacrificing the quality of image registration 
    more » « less
  4. With the rapid development of social media, visual sentiment analysis from image or video has become a hot spot in visual understanding researches. In this work, we propose an effective approach using visual and textual fusion for sentiment analysis of short GIF videos with textual descriptions. We extract both sequence-level and frame-level visual features for each given GIF video. Next, we build a visual sentiment classifier by using the extracted features. We also define a mapping function, which converts the sentiment probability from the classifier to a sentiment score used in our fusion function. At the same time, for the accompanying textual annotations, we employ the Synset forest to extract the sets of the meaningful sentiment words and utilize the SentiWordNet3.0 model to obtain the textual sentiment score. Then, we design a joint visual-textual sentiment score function weighted with visual sentiment component and textual sentiment one. To make the function more robust, we introduce a noticeable difference threshold to further process the fused sentiment score. Finally, we adopt a grid search technique to obtain relevant model hyper-parameters by optimizing a sentiment aware score function. Experimental results and analysis extensively demonstrate the effectiveness of the proposed sentiment recognition scheme on three benchmark datasets including the TGIF dataset, GSO-2016 dataset, and Adjusted-GIFGIF dataset. 
    more » « less
  5. null (Ed.)
    Attention-based image classification has gained increasing popularity in recent years. State-of-the-art methods for attention-based classification typically require a large training set and operate under the assumption that the label of an image depends solely on a single object (i.e., region of interest) in the image. However, in many real-world applications (e.g., medical imaging), it is very expensive to collect a large training set. Moreover, the label of each image is usually determined jointly by multiple regions of interest (ROIs). Fortunately, for such applications, it is often possible to collect the locations of the ROIs in each training image. In this paper, we study the problem of guided multi-attention classification, the goal of which is to achieve high accuracy under the dual constraints of (1) small sample size, and (2) multiple ROIs for each image. We propose a model, called Guided Attention Recurrent Network (GARN), for multi-attention classification. Different from existing attention-based methods, GARN utilizes guidance information regarding multiple ROIs thus allowing it to work well even when sample size is small. Empirical studies on three different visual tasks show that our guided attention approach can effectively boost model performance for multi-attention image classification. 
    more » « less
  6. null (Ed.)