skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Das, Debabrata"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Supercapacitors and batteries are essential for sustainable energy development. However, the bottleneck is the associated high cost, which limits bulk use of batteries and supercapacitors. In this context, realizing that the cost of energy‐storage device mainly depends on materials, synthesis processes/procedures, and device fabrication, an effort is made to rationally design and develop novel low‐cost electrode materials with enhanced electrochemical performance in asymmetric supercapacitors. Herein, surface functionalization approach is adopted to design low‐cost 3D mesoporous and nanostructured nickel–nickel oxide electrode materials using facile synthesis for application in supercapacitors. It is demonstrated that the 3D mesoporous Ni provides the high surface area and enhanced ionic conductivity, while germanium functionalization improves the electrical conductivity and reduces the charge‐transfer resistance of NiO. Surface functionalization with Ge demonstrates the significant improvement in specific capacitance of NiO. The asymmetric supercapacitor using these Ge‐functionalized NiO–Ni electrodes provides a specific capacitance of 304 Fg−1(94 mF cm−2), energy density of 23.8 Wh kg−1(7.35 μWh cm−2), and power density of 6.8 kW kg−1(2.1 mW cm−2) with excellent cyclic stability of 92% after 10 000 cycles. To validate their practical applications, powering the digital watch using the asymmetric supercapacitors in laboratory conditions is demonstrated. 
    more » « less
  2. Despite extensive research and technology to reduce the atmospheric emission of Pb from burning coal for power generation, minimal attention has been paid to Pb associated with coal ash disposal in the environment. This study investigates the isotopic signatures and output rates of Pb in fly ash disposal in China, India, and the United States. Pairwise comparison between feed coal and fly ash samples collected from coal-fired power plants from each country shows that the Pb isotope composition of fly ash largely resembles that of feed coal, and its isotopic distinction allows for tracing the release of Pb from coal fly ash into the environment. Between 2000 and 2020, approx. 236, 56, and 46 Gg Pb from fly ash have been disposed in China, India, and the U.S., respectively, posing a significant environmental burden. A Bayesian Pb isotope mixing model shows that during the past 40 to 70 years, coal fly ash has contributed significantly higher Pb (∼26%) than leaded gasoline (∼7%) to Pb accumulation in the sediments of five freshwater lakes in North Carolina, U.S.A. This implies that the release of disposed coal fly ash Pb at local and regional scales can outweigh that of other anthropogenic Pb sources. 
    more » « less