skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Deng, Liangdong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Chen, D (Ed.)
    One of the persistent challenges in multispectral image analysis is the interference caused by dense cloud cover and its resulting shadows, which can significantly obscure surface features. This becomes especially problematic when attempting to monitor surface changes over time using satellite imagery, such as from Landsat-8. In this study, rather than simply masking visual obstructions, we aimed to investigate the role and influence of clouds within the spectral data itself. To achieve this, we employed Independent Component Analysis (ICA), a statistical method capable of decomposing mixed signals into independent source components. By applying ICA to selected Landsat-8 bands and analyzing each component individually, we assessed the extent to which cloud signatures are entangled with surface data. This process revealed that clouds contribute to multiple ICA components simultaneously, indicating their broad spectral influence. With this influence on multiple wavebands, we managed to configure a set of components that could perfectly delineate the extent and location of clouds. Moreover, because Landsat-8 lacks cloud-penetrating wavebands, such as those in the microwave range (e.g., SAR), the surface information beneath dense cloud cover is not captured at all, making it physically impossible for ICA to recover what is not sensed in the first place. Despite these limitations, ICA proved effective in isolating and delineating cloud structures, allowing us to selectively suppress them in reconstructed images. Additionally, the technique successfully highlighted features such as water bodies, vegetation, and color-based land cover differences. These findings suggest that while ICA is a powerful tool for signal separation and cloud-related artifact suppression, its performance is ultimately constrained by the spectral and spatial properties of the input data. Future improvements could be realized by integrating data from complementary sensors—especially those operating in cloud-penetrating wavelengths—or by using higher spectral resolution imagery with narrower bands. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Free, publicly-accessible full text available May 5, 2026
  3. Free, publicly-accessible full text available March 22, 2026
  4. Road extraction is a sub-domain of remote sensing applications; it is a subject of extensive and ongoing research. The procedure of automatically extracting roads from satellite imagery encounters significant challenges due to the multi-scale and diverse structures of roads; improvement in this field is needed. Convolutional neural networks (CNNs), especially the DeepLab series known for its proficiency in semantic segmentation due to its efficiency in interpreting multi-scale objects’ features, address some of these challenges caused by the varying nature of roads. The present work proposes the utilization of DeepLabV3+, the latest version of the DeepLab series, by introducing an innovative Dense Depthwise Dilated Separable Spatial Pyramid Pooling (DenseDDSSPP) module and integrating it in the place of the conventional Atrous Spatial Pyramid Pooling (ASPP) module. This modification enhances the extraction of complex road structures from satellite images. This study hypothesizes that the integration of DenseDDSSPP with a CNN backbone network and a Squeeze-and-Excitation block will generate an efficient dense feature map by focusing on relevant features, leading to more precise and accurate road extraction from remote sensing images. The Results Section presents a comparison of our model’s performance against state-of-the-art models, demonstrating better results that highlight the effectiveness and success of the proposed approach. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  5. Geographic datasets are usually accompanied by spatial non-stationarity – a phenomenon that the relationship between features varies across space. Naturally, nonstationarity can be interpreted as the underlying rule that decides how data are generated and alters over space. Therefore, traditional machine learning algorithms are not suitable for handling non-stationary geographic datasets, as they only render a single global model. To solve this problem, researchers often adopt the multiple-local-model approach, which uses different models to account for different sub-regions of space. This approach has been proven efficient but not optimal, as it is inherently difficult to decide the size of subregions. Additionally, the fact that local models are only trained on a subset of data also limits their potential. This paper proposes an entirely different strategy that interprets nonstationarity as a lack of data and addresses it by introducing latent variables to the original dataset. Backpropagation is then used to find the best values for these latent variables. Experiments show that this method is at least as efficient as multiple-local-model-based approaches and has even greater potential. 
    more » « less
  6. null (Ed.)
    Non-stationarity is often observed in Geographic datasets. One way to explain non-stationarity is to think of it as a hidden "local knowledge" that varies across space. It is inherently difficult to model such data as models built for one region do not necessarily fit another area as the local knowledge could be different. A solution for this problem is to construct multiple local models at various locations, with each local model accounting for a sub-region within which the data remains relatively stationary. However, this approach is sensitive to the size of data, as the local models are only trained from a subset of observations from a particular region. In this paper, we present a novel approach that addresses this problem by aggregating spatially similar sub-regions into relatively large partitions. Our insight is that although local knowledge shifts over space, it is possible for multiple regions to share the same local knowledge. Data from these regions can be aggregated to train a more accurate model. Experiments show that this method can handle non-stationary and outperforms when the dataset is relatively small. 
    more » « less
  7. null (Ed.)
    Recent years saw explosive growth of Human Geography Data, in which spatial non-stationarity is often observed, i.e., relationships between features depend on the location. For these datasets, a single global model cannot accurately describe the relationships among features that vary across space. To address this problem, a viable solution- that has been adopted by many studies-is to create multiple local models instead of a global one, with each local model representing a subregion of the space. However, the challenge with this approach is that the local models are only fitted to nearby observations. For sparsely sampled regions, the data could be too few to generate any high-quality model. This is especially true for Human Geography datasets, as human activities tend to cluster at a few locations. In this paper, we present a modeling method that addresses this problem by letting local models operate within relatively large subregions, where overlapping is allowed. Results from all local models are then fused using an inverse distance weighted approach, to minimize the impact brought by overlapping. Experiments showed that this method handles non-stationary geographic data very Well, even When they are unevenly distributed. 
    more » « less