Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 14, 2025
-
Free, publicly-accessible full text available August 14, 2025
-
Free, publicly-accessible full text available August 14, 2025
-
Free, publicly-accessible full text available August 12, 2025
-
Free, publicly-accessible full text available July 1, 2025
-
Abstract Clean water free of bacteria is a precious resource in areas where no centralized water facilities are available. Conventional chlorine disinfection is limited by chemical transportation, storage, and the production of carcinogenic by-products. Here, a smartphone-powered disinfection system is developed for point-of-use (POU) bacterial inactivation. The integrated system uses the smartphone battery as a power source, and a customized on-the-go (OTG) hardware connected to the phone to realize the desired electrical output. Through a downloadable mobile application, the electrical output, either constant current (20–1000 µA) or voltage (0.7–2.1 V), can be configured easily through a user-friendly graphical interface on the screen. The disinfection device, a coaxial-electrode copper ionization cell (CECIC), inactivates bacteria by low levels of electrochemically generated copper with low energy consumption. The strategy of constant current control is applied in this study to solve the problem of uncontrollable copper release by previous constant voltage control. With the current control, a high inactivation efficiency ofE. coli(~6 logs) is achieved with a low level of effluent Cu (~200 µg L−1) in the water samples within a range of salt concentration (0.2–1 mmol L−1). The smartphone-based power workstation provides a versatile and accurate electrical output with a simple graphical user interface. The disinfection device is robust, highly efficient, and does not require complex equipment. As smartphones are pervasive in modern life, the smartphone-powered CECIC system could provide an alternative decentralized water disinfection approach like rural areas and outdoor activities.more » « less
-
Abstract Electrohydrodynamic jet (e‐jet) printing is a high‐resolution printed electronics technique that uses an electric field to generate droplets. It has great application potential with the rapid development of flexible and wearable electronics. Triboelectric nanogenerators (TENG), which can convert mechanical motions into electricity, have found many high‐voltage applications with unique merits of portability, controllability, safety, and cost‐effectiveness. In this work, the application of a TENG is extended to printed electronics by employing it to drive e‐jet printing. A rotary freestanding TENG is applied as the high‐voltage power source for generating stable ink droplet ejection. The TENG‐driven droplet generation and ejection process and printed features with varied operation parameters are investigated. Results reveal that the jetting frequency could be controlled by the TENG's operation frequency, and high‐resolution printing with feature size smaller than nozzle size is achieved using the setup. Notably, TENG as the power source for e‐jet printing supplies a limited amount of current, which leads to better safety for both equipment and personnel compared to conventional high‐voltage power supplies. With the superiority of TENG in the sense of safety and cost, the work presents a promising solution for the next‐generation of high‐resolution printed electronics and broadens the scope of TENG application.more » « less