Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 25, 2026
-
The objectives of International Ocean Discovery Program Expedition 398, Hellenic Arc Volcanic Field (11 December 2022 to 10 February 2023), were to study the volcanic record of the central Hellenic island arc; document the links and feedbacks between volcanism/magmatism, crustal tectonics, and sea level; investigate the processes and products of shallow submarine eruptions of silicic magma; and groundtruth the seismic stratigraphy of Santorini caldera. Reconstructing the subsidence history of the southern Aegean Sea and searching for deep life inside and outside of Santorini caldera were additional objectives. During the expedition, 10 primary and alternate sites that were originally proposed were drilled, in addition to 2 extra sites that were requested during the expedition. Outside of Santorini caldera, drilling penetrated the thick basin fills of the crustal rift system hosting the Christiana-Santorini-Kolumbo volcanic field, identifying numerous pumice and ash layers, some known from on land and others hitherto unknown, pushing back the onset of volcanism in the area into the Early Pleistocene or even Pliocene. Significant events of mass wasting into the basins, accompanied by very high sedimentation rates, were also documented. These basin sites served to groundtruth the seismic stratigraphy of the basins and open the way to unraveling relationships between volcanic activity and crustal rift pulses. Two sites of condensed sequences served to sample many volcanic layers within the detailed age-depth constraints provided mainly by biostratigraphy, as diagenetic effects complicated the magnetic reversal record significantly. Drilling penetrated the Alpine basement at three basin sites northeast of Santorini, whereas in the Christiana Basin to the southwest it penetrated a thick sequence of Messinian evaporites. Drilling inside Santorini caldera penetrated to ~120 meters below seafloor, less than planned due to hole instability issues but deep enough to groundtruth the seismic stratigraphy and sample the different layers. One intracaldera hole yielded a detailed tephra record of the history of the Kameni Islands, as well as possible evidence for deep bacterial colonies within the caldera. Despite variable recovery in the unstable pumice and ash deposits, the expedition was a significant success that may address almost all the scientific objectives once the laboratory work has been done.more » « less
-
We present seismic two-way traveltime depth relationships for all sites drilled by the International Ocean Discovery Program Expedition 398, Hellenic Arc Volcanic Field, using high-resolution multichannel seismic and core data. First, we filter and interpolate P-wave velocity and density data taken from (1) whole-round cores and (2) discrete measurements on half-round cores. We establish the reliability of shipboard density measurements by comparing them with in situ logging data. Using these validated measurements, we estimate acoustic impedance and synthetic seismograms. By correlating synthetic seismograms with those extracted from multichannel seismic profiles at each site, we establish time-depth relationships. We assess the quality of these relationships by examining the alignment of major lithologic boundaries with prominent unconformities or correlated conformities in the reflection seismic data. The results of this report facilitate the mapping of core data onto the multichannel seismic profiles at each site, allowing for spatial tracing of core data across the Christiana-Santorini-Kolumbo volcanic field.more » « lessFree, publicly-accessible full text available June 13, 2026
-
The objectives of International Ocean Discovery Program (IODP) Expedition 398, Hellenic Arc Volcanic Field (11 December 2022 to 10 February 2023), were to study the volcanic record of the central Hellenic island arc; document the links and feedbacks between volcanism/magmatism, crustal tectonics, and sea level; investigate the processes and products of shallow submarine eruptions of silicic magma; and groundtruth the seismic stratigraphy of Santorini caldera. Reconstructing the subsidence history of the southern Aegean Sea and searching for deep life inside and outside of Santorini caldera were additional objectives. The expedition drilled 10 primary and alternate sites that were originally proposed, in addition to 2 extra sites that were requested during the expedition. Outside of Santorini caldera, drilling penetrated the thick basin fills of the crustal rift system hosting the Christiana-Santorini-Kolumbo volcanic field, identifying numerous pumice and ash layers, some known from on land and others hitherto unknown, pushing back the onset of volcanism in the area into the Early Pleistocene or even Pliocene. Significant events of mass wasting into the basins, accompanied by very high sedimentation rates, were also documented. These basin sites served to groundtruth the seismic stratigraphy of the basins and to open the way to unraveling relationships between volcanic activity and crustal rift pulses. Two sites of condensed sequences on the basin margins served to sample many volcanic layers within the detailed age-depth constraints provided mainly by biostratigraphy, as diagenetic effects complicated the magnetic reversal record significantly. Drilling penetrated the Alpine basement at three basin sites northeast of Santorini, whereas in the Christiana Basin to the southwest it penetrated a thick sequence of Messinian evaporites. Drilling inside Santorini caldera penetrated to ~120 meters below seafloor (mbsf), less than planned due to hole instability issues but deep enough to groundtruth the seismic stratigraphy and to sample the different layers. One intracaldera hole yielded a detailed tephra record of the history of the Kameni Islands, as well as possible evidence for deep bacterial colonies within the caldera. Despite variable recovery in the unstable pumice and ash deposits, the expedition was a significant success that may address almost all the science objectives once the laboratory work has been done. A dense program of preexpedition and shipboard outreach during the expedition gave rise to 59 live ship-to-shore tours, reaching 6,400 people in 7 countries including many school children. A total of 51 journalists were contacted and 9 stories were written about the expedition, with a readership of almost 200,000 people. While in Santorini caldera, the ship hosted 12 documentarians and journalists, the future products of whom should include a 1.5 h documentary and a four-part TV series about Expedition 398. The expedition social media pages were active. Prior to the expedition, an exhibition, “In Search of Earth’s Secrets,” ran for a week on Santorini and was visited by more than 1,800 school children.more » « less
-
Site U1592 (proposed Site CSK-09A) is located ~10 km southeast of Anhydros Island in the Anafi Basin at 693 meters below sea level (mbsl) (Figure F1). The aim at the site was to penetrate the entire volcano-sedimentary fill as far as the Alpine basement to reconstruct the evolution of the Anafi Basin: history of subsidence, presence of volcanic event layers in the basin sediments, and links between volcanism and crustal tectonics. We drilled to a maximum recovery depth of 519.8 meters below seafloor (mbsf) in two holes (U1592A and U1592B), terminating in limestone basement (all depths below seafloor [mbsf] are given using the core depth below seafloor, Method A [CSF-A], scale, except in Operations where the drilling depth below seafloor [DSF] scale is used). Average core recoveries were 71% (Hole U1592A) and 50% (Hole U1592B). The Anafi Basin potentially recorded the full volcanic history of Santorini (and any older centers) since rift inception, but it was envisaged to probably also contain few eruptive products from Kolumbo. Drilling enabled reconstruction of the volcanic, sedimentary, and tectonic histories of the Anafi Basin, allowing us to compare its evolution with that of the Anhydros Basin. The site was also chosen to develop a core-log-seismic integration stratigraphy and compare it with the recently published seismic stratigraphy for the basin (Preine et al., 2022a, 2022b) and the paleotectonic reconstruction of the region (Nomikou et al., 2016, 2018). The site transects six seismic packages of the Anafi rift basin, as well as the onlap surfaces between them (Nomikou et al., 2016, 2018; Preine et al., 2022a) (Figure F2). The Anafi Basin is crossed by many seismic profiles obtained in campaigns between 2006 and 2019, many of them multichannel (Hübscher et al., 2015; Nomikou et al., 2016, 2018). It is included within the area of the 2015 PROTEUS seismic tomography experiment, during which subbottom profiling, gravity, and magnetic data were also recorded (Hooft et al., 2017). The basin bathymetry had been studied in several marine campaigns, and fault distributions and throws had been mapped (Nomikou et al., 2016; Hooft et al., 2017). Previously published analyses of the seismic data suggested the following possible interpretations (from the bottom up; Preine et al., 2022a, 2022b): Units U1 and U2: sediment packages predating Santorini and Kolumbo volcanism; Unit U3: sediments and the products of the early Kolumbo volcanism and some of the Kolumbo cones; Unit U4: sediments associated with a major rift pulse; and Units U5 and U6: sediments and the products of Santorini activity, some of the Kolumbo cones, and the later eruptions of Kolumbo including the 1650 Common Era (CE) eruption. Units U3–U6 were believed to be of Pleistocene age, and Units U1 and U2 were believed to be possibly Pliocene. The site enabled us to test these interpretations by using the cores to reconstruct a near-complete volcanic stratigraphy consistent with both onshore and offshore constraints and pinned by chronological markers from biostratigraphy, magnetostratigraphy, and sapropel records. Benthic foraminifera from fine-grained sediments provided estimates of paleowater depths and, through integration with seismic profiles and chronologic data, of time-integrated basin subsidence rates. Coring at Site U1592 in the Anafi Basin addressed scientific Objectives 1–4 and 6 of the Expedition 398 Scientific Prospectus (Druitt et al., 2022). It was complemented by Site U1589 in the Anhydros Basin because each basin taps a different sediment distributary branch of the Christiana-Santorini-Kolumbo volcanic system.more » « less
-
Site U1600 is located 10 km south of Anhydros Island within a small graben atop the Anhydros Horst (Figure F1). The Anhydros Horst separates the Anhydros Basin to the west from the Anafi Basin to the east (Preine et al., 2022a, 2022b). The water depth is 326 meters below sea level (mbsl). Permission to drill in this location was requested as Site CSK-24A and granted by the International Ocean Discovery Program (IODP) Environmental Protection and Safety Panel during the expedition. Three holes (U1600A–U1600C) were drilled for a total recovery depth of 184.2 meters below seafloor (mbsf) (all depths below seafloor are given using the core depth below seafloor, Method A [CSF-A] scale, except in Operations, where the drilling depth below seafloor [DSF] scale is used), with average recoveries ranging 32%–75%. The site was chosen because of its situation on the Anhydros Horst immediately east of the Kolumbo chain of volcanoes and for the well-stratified nature of the graben fill on seismic profiles (Figure F2). It seemed to be a likely site at which to drill a condensed sequence of muds and tephra for chronology, sheltered from the large-scale mass wasting of the main basins. Site U1600 is located within the area of the 2015 PROTEUS seismic tomography experiment, during which subbottom profiling, gravity, and magnetic data were also recorded (Hooft et al., 2017). Drilling at Site U1600 provided the possibility of reconstructing a near-complete volcanic stratigraphy consistent with both onshore and offshore constraints and pinned by chronological markers from biostratigraphy, magnetostratigraphy, and sapropel records. Benthic foraminifera from fine-grained sediments provided estimates of paleowater depths and, via integration with seismic profiles and chronologic data, of time-integrated basin subsidence rates. Drilling on the Anhydros Horst addressed scientific Objectives 1–4 and 6 of the Expedition 398 Scientific Prospectus (Druitt et al., 2022).more » « less
-
Site U1594 (proposed Site CSK-07B) is located in the southern basin of Santorini caldera at a water depth of 291 meters below sea level (mbsl) (Figure F1). It was drilled to a maximum recovery depth of 50.1 meters below seafloor (mbsf) in a single hole (U1594A) with 93% recovery before hole instability set in and the hole was terminated (all depths below seafloor are given using the core depth below seafloor, Method A [CSF-A] scale, except in Operations where the drilling depth below seafloor [DSF] scale is used). Site U1595 addresses the same drilling objectives and lies southwest of Site U1594. Two additional sites (U1596 and U1597) lie in the northern caldera basin. Four seismic units have been recognized in the caldera (Johnston et al., 2015; Nomikou et al., 2016) (Figure F2). They were thought to consist of muds and sands from cliff mass wasting (Seismic Unit S1); compacted (possibly lithified) sandy volcaniclastics from Kameni Volcano (Unit S2); and consolidated coarse blocky intracaldera tuffs, landslide debris, and/or flood gravels (Unit S3). Unit S4 was thought to be intracaldera tuff from the Late Bronze Age eruption. The four caldera sites were planned to sample Units S1–S3; test the published correlations between the two caldera basins; penetrate below Unit S3 into Unit S4; and address scientific Objectives 1, 4, 5, and 7 of the Expedition 398 Scientific Prospectus (Druitt et al., 2022). By drilling both caldera basins and exploiting our dense seismic reflection coverage, we gained access to the 3D architecture of the entire caldera fill. We also targeted the question of why the northern basin is 100 m deeper than the southern one. Finally, we tested whether Unit S3 consisted of flood debris from the caldera flooding event (Nomikou et al., 2016) or was Late Bronze Age intracaldera tuff (Johnston et al., 2015). The intracaldera sites were used for microbiological work of scientific Objective 7.more » « less
-
Site U1597 (proposed Site CSK-05C) is located in the northern basin of the Santorini caldera (Figure F1). It lies at a water depth of 382 meters below sea level (mbsl) and has a maximum recovery depth of 42.7 meters below seafloor (mbsf) (all depths below seafloor are given using the core depth below seafloor, Method A [CSF-A], scale, except in Operations where the drilling depth below seafloor [DSF] scale is used) with 94% core recovery. Site U1597 addresses the same drilling objectives and lies southeast of Site U1596. Two additional sites (U1594 and U1595) lie in the southern caldera basin. Four seismic units have been recognized in the Santorini caldera (Johnston et al., 2015; Nomikou et al., 2016) (Figure F2). They were thought to consist of muds and sands from cliff mass wasting (Unit S1); compacted (possibly lithified) sandy volcaniclastics from Kameni Volcano (Unit S2); and consolidated coarse blocky intracaldera tuffs, landslide debris, and/or flood gravels (Unit S3). Seismic Unit S4 was thought to be intracaldera tuff from the Late Bronze Age eruption. The four caldera sites were planned to sample Units S1–S3; test the published correlations between the two caldera basins; penetrate below Unit S3 into Unit S4; and address scientific Objectives 1, 4, 5, and 7 of the Expedition 398 Scientific Prospectus (Druitt et al., 2022). By drilling both caldera basins and exploiting our dense seismic reflection coverage, we gained access to the 3D architecture of the entire caldera fill. We also addressed the question of why the northern basin is 100 m deeper than the southern one, with a thicker Unit S1 but a thinner Unit S3. Finally, we tested whether Unit S3 consisted of flood debris from the caldera-flooding event (Nomikou et al., 2016) or whether it was Late Bronze Age intracaldera tuff (Johnston et al., 2015). The intracaldera sites were used for microbiological work of Objective 7.more » « less
-
Site U1599 is located ~6 km north of Anafi Island within the upper reaches of the Anafi Basin at a water depth of 592 meters below sea level (mbsl) (Figure F1). Permission to drill in this location was granted by the International Ocean Discovery Program (IODP) Environmental Protection and Safety Panel during the expedition (proposed Site CSK-22A). Three holes (U1599A–U1599C) were drilled to a maximum recovery depth of 698.1 meters below seafloor (mbsf) (all depths below seafloor are given using the core depth below seafloor, Method A [CSF-A] scale, except in Operations, where the drilling depth below seafloor [DSF] scale is used), with average hole core recoveries ranging 51%–83% (Figure F2). Whereas Site U1592 is situated on the axis of the Anafi Basin and penetrated a thick basin fill including mass-transported material, Site U1599 is located on the southeast margin of the basin. It was chosen to offer a condensed sequence of tephra without quantities of mass-wasting debris. As such, it provided a complete stratigraphy of volcanic tephra from Santorini and Kolumbo. The same six seismic units (U1–U6, from the bottom up; Preine et al., 2022a, 2022b) present at Site U1592 are present at Site U1599. Site U1599 is located within the area of the 2015 PROTEUS seismic tomography experiment, during which subbottom profiling, gravity, and magnetic data were also recorded (Hooft et al., 2017). Drilling at Site U1599 enabled us to reconstruct a near-complete volcanic stratigraphy consistent with both onshore and offshore constraints and pinned by chronological markers from biostratigraphy, magnetostratigraphy, and sapropel records. Benthic foraminifera from fine-grained sediments provided estimates of paleowater depths and, via integration with seismic profiles and chronologic data, of time-integrated basin subsidence rates. Drilling in the Anafi Basin addressed scientific Objectives 1–4 and 6 of the Expedition 398 Scientific Prospectus (Druitt et al., 2022). It was complemented by Site U1589 in the Anhydros Basin because each basin tapped a different sediment distributary branch of the Christiana-Santorini-Kolumbo volcanic system.more » « less
-
Site U1590 (proposed Site CSK-03A) is located 5 km northwest of the submarine Kolumbo crater on its flank in the Anhydros Basin at 397 meters below sea level (mbsl) (Figure F1). It lies on the intersection of Seismic Lines HH06-22 and HH06-34 (Figure F2). Drilling took place in two holes (U1590A and U1590B) to a maximum recovery depth of 627.8 meters below seafloor (mbsf) (all depths below seafloor are given using the core depth below seafloor, Method A [CSF-A], scale, except in Operations, where the drilling depth below seafloor [DSF] scale is used). Average core recovery in Hole U1590A was moderate (61%), but recovery in Hole U1590B was poor (14%). The seismic profiles across the Kolumbo edifice reveal five units interpreted as Kolumbo-derived volcaniclastics (K1–K5, from the base up; Figure F2) with Unit K5 representing the 1650 Common Era (CE) eruption (Hübscher et al., 2015; Preine et al., 2022). The submarine cones northeast of Kolumbo postdate Unit K2 on seismic profiles, but their products are not expected to be prominent in our drill cores. The aim of drilling on the flanks of Kolumbo was to penetrate the different seismically recognized volcanic eruption units from that volcano (K1, K2, K3, and K5 or their thin, lateral equivalents) as well as many eruption units from Santorini and traces from the submarine cones northeast of Kolumbo. This enabled characterization of the products of the Kolumbo eruptions and construction of a coherent stratigraphy for Santorini and the submarine Kolumbo volcano chain together. The anticipated lithologies were volcaniclastics, muds, and turbidites. Site U1590 lies at the foot of the Kolumbo edifice; it allowed us to drill Seismic Units K1, K2, K3, and K5 and therefore nearly the entire history of Kolumbo Volcano. Intercalated seismic units are believed to contain the products of Santorini eruptions, including potentially those of smaller magnitude than recorded at the more distal basin sites.more » « less
An official website of the United States government

Full Text Available