skip to main content

Search for: All records

Creators/Authors contains: "Ekstrand, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. To account for privacy perceptions and preferences in user models and develop personalized privacy systems, we need to understand how users make privacy decisions in various contexts. Existing studies of privacy perceptions and behavior focus on overall tendencies toward privacy, but few have examined the context-specific factors in privacy decision making. We conducted a survey on Mechanical Turk (N=401) based on the theory of planned behavior (TPB) to measure the way users’ perceptions of privacy factors and intent to disclose information are affected by three situational factors embodied hypothetical scenarios: information type, recipients’ role, and trust source. Results showed amore »positive relationship between subjective norms and perceived behavioral control, and between each of these and situational privacy attitude; all three constructs are significantly positively associated with intent to disclose. These findings also suggest that, situational factors predict participants’ privacy decisions through their influence on the TPB constructs.« less
    Free, publicly-accessible full text available June 21, 2022
  2. There is increasing attention to evaluating the fairness of search system ranking decisions. These metrics often consider the membership of items to particular groups, often identified using protected attributes such as gender or ethnicity. To date, these metrics typically assume the availability and completeness of protected attribute labels of items. However, the protected attributes of individuals are rarely present, limiting the application of fair ranking metrics in large scale systems. In order to address this problem, we propose a sampling strategy and estimation technique for four fair ranking metrics. We formulate a robust and unbiased estimator which can operate evenmore »with very limited number of labeled items. We evaluate our approach using both simulated and real world data. Our experimental results demonstrate that our method can estimate this family of fair ranking metrics and provides a robust, reliable alternative to exhaustive or random data annotation.« less
    Free, publicly-accessible full text available April 19, 2022
  3. Collaborative filtering algorithms find useful patterns in rating and consumption data and exploit these patterns to guide users to good items. Many of these patterns reflect important real-world phenomena driving interactions between the various users and items; other patterns may be irrelevant or reflect undesired discrimination, such as discrimination in publishing or purchasing against authors who are women or ethnic minorities. In this work, we examine the response of collaborative filtering recommender algorithms to the distribution of their input data with respect to one dimension of social concern, namely content creator gender. Using publicly available book ratings data, we measuremore »the distribution of the genders of the authors of books in user rating profiles and recommendation lists produced from this data. We find that common collaborative filtering algorithms tend to propagate at least some of each user’s tendency to rate or read male or female authors into their resulting recommendations, although they differ in both the strength of this propagation and the variance in the gender balance of the recommendation lists they produce. The data, experimental design, and statistical methods are designed to be reusable for studying potentially discriminatory social dimensions of recommendations in other domains and settings as well.« less
    Free, publicly-accessible full text available February 1, 2022
  4. LensKit is an open-source toolkit for building, researching, and learning about recommender systems. First released in 2010 as a Java framework, it has supported diverse published research, small-scale production deployments, and education in both MOOC and traditional classroom settings. In this paper, I present the next generation of the LensKit project, re-envisioning the original tool's objectives as flexible Python package for supporting recommender systems research and development. LensKit for Python (LKPY) enables researchers and students to build robust, flexible, and reproducible experiments that make use of the large and growing PyData and Scientific Python ecosystem, including scikit-learn, and TensorFlow. Tomore »that end, it provides classical collaborative filtering implementations, recommender system evaluation metrics, data preparation routines, and tools for efficiently batch running recommendation algorithms, all usable in any combination with each other or with other Python software. This paper describes the design goals, use cases, and capabilities of LKPY, contextualized in a reflection on the successes and failures of the original LensKit for Java software.« less
  5. We introduce the concept of \emph{expected exposure} as the average attention ranked items receive from users over repeated samples of the same query. Furthermore, we advocate for the adoption of the principle of equal expected exposure: given a fixed information need, no item should receive more or less expected exposure than any other item of the same relevance grade. We argue that this principle is desirable for many retrieval objectives and scenarios, including topical diversity and fair ranking. Leveraging user models from existing retrieval metrics, we propose a general evaluation methodology based on expected exposure and draw connections to relatedmore »metrics in information retrieval evaluation. Importantly, this methodology relaxes classic information retrieval assumptions, allowing a system, in response to a query, to produce a \emph{distribution over rankings} instead of a single fixed ranking. We study the behavior of the expected exposure metric and stochastic rankers across a variety of information access conditions, including \emph{ad hoc} retrieval and recommendation. We believe that measuring and optimizing expected exposure metrics using randomization opens a new area for retrieval algorithm development and progress.« less
  6. Offline evaluation protocols for recommender systems are intended to estimate users' satisfaction with recommendations using static data from prior user interactions. These evaluations allow researchers and production developers to carry out first-pass estimates of the likely performance of a new system and weed out bad ideas before presenting them to users. However, offline evaluations cannot accurately assess novel, relevant recommendations, because the most novel recommendations items that were previously unknown to the user; such items are missing from the historical data, so they cannot be judged as relevant. A breakthrough that reliably produces novel, relevant recommendations would score poorly withmore »current offline evaluation techniques. While the existence of this problem is noted in the literature, its extent is not well-understood. We present a simulation study to estimate the error that such missing data causes in commonly-used evaluation metrics in order to assess its prevalence and impact. We find that missing data in the rating or observation process causes the evaluation protocol to systematically mis-estimate metric values, and in some cases erroneously determine that a popularity-based recommender outperforms even a perfect personalized recommender. Substantial breakthroughs in recommendation quality, therefore, will be difficult to assess with existing offline techniques.« less
  7. We present StoryTime, a book recommender for children. Our web-based recommender is co-designed with children and uses images to elicit their preferences. By building on existing solutions related to both visual interfaces and book recommendation strategies for children, StoryTime can generate suggestions without historical data or adult guidance. We discuss the benefits of StoryTime as a starting point for further research exploring the cold start problem, incorporating historical data, and needs related to children as a complex audience to enhance the recommendation process.
  8. Traditional offline evaluations of recommender systems apply metrics from machine learning and information retrieval in settings where their underlying assumptions no longer hold. This results in significant error and bias in measures of top-N recommendation performance, such as precision, recall, and nDCG. Several of the specific causes of these errors, including popularity bias and misclassified decoy items, are well-explored in the existing literature. In this paper we survey a range of work on identifying and addressing these problems, and report on our work in progress to simulate the recommender data generation and evaluation processes to quantify the extent of evaluationmore »metric errors and assess their sensitivity to various assumptions.« less
  9. In this position paper, we argue for applying recent research on ensuring sociotechnical systems are fair and non-discriminatory to the privacy protections those systems may provide. Privacy literature seldom considers whether a proposed privacy scheme protects all persons uniformly, irrespective of membership in protected classes or particular risk in the face of privacy failure. Just as algorithmic decision-making systems may have discriminatory outcomes even without explicit or deliberate discrimination, so also privacy regimes may disproportionately fail to protect vulnerable members of their target population, resulting in disparate impact with respect to the effectiveness of privacy protections.We propose a research agendamore »that will illuminate this issue, along with related issues in the intersection of fairness and privacy, and present case studies that show how the outcomes of this research may change existing privacy and fairness research. We believe it is important to ensure that technologies and policies intended to protect the users and subjects of information systems provide such protection in an equitable fashion.« less
  10. Personalized systems increasingly employ Privacy Enhancing Technologies (PETs) to protect the identity of their users. In this paper, we are interested in whether the cost-benefit tradeoff — the underlying economics of the privacy calculus — is fairly distributed, or whether some groups of people experience a lower return on investment for their privacy decisions.