skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fang, Ethan X"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With a manifold growth in the scale and intricacy of systems, the challenges of parametric misspecification become pronounced. These concerns are further exacerbated in compositional settings, which emerge in problems complicated by modeling risk and robustness. In “Data-Driven Compositional Optimization in Misspecified Regimes,” the authors consider the resolution of compositional stochastic optimization problems, plagued by parametric misspecification. In considering settings where such misspecification may be resolved via a parallel learning process, the authors develop schemes that can contend with diverse forms of risk, dynamics, and nonconvexity. They provide asymptotic and rate guarantees for unaccelerated and accelerated schemes for convex, strongly convex, and nonconvex problems in a two-level regime with extensions to the multilevel setting. Surprisingly, the nonasymptotic rate guarantees show no degradation from the rate statements obtained in a correctly specified regime and the schemes achieve optimal (or near-optimal) sample complexities for general T-level strongly convex and nonconvex compositional problems. 
    more » « less
  2. Assortment optimization has received active explorations in the past few decades due to its practical importance. Despite the extensive literature dealing with optimization algorithms and latent score estimation, uncertainty quantification for the optimal assortment still needs to be explored and is of great practical significance. Instead of estimating and recovering the complete optimal offer set, decision-makers may only be interested in testing whether a given property holds true for the optimal assortment, such as whether they should include several products of interest in the optimal set, or how many categories of products the optimal set should include. This paper proposes a novel inferential framework for testing such properties. We consider the widely adopted multinomial logit (MNL) model, where we assume that each customer will purchase an item within the offered products with a probability proportional to the underlying preference score associated with the product. We reduce inferring a general optimal assortment property to quantifying the uncertainty associated with the sign change point detection of the marginal revenue gaps. We show the asymptotic normality of the marginal revenue gap estimator, and construct a maximum statistic via the gap estimators to detect the sign change point. By approximating the distribution of the maximum statistic with multiplier bootstrap techniques, we propose a valid testing procedure. We also conduct numerical experiments to assess the performance of our method. 
    more » « less