Gravitationalwave (GW) detections are starting to reveal features in the mass distribution of double compact objects. The lower end of the black hole (BH) mass distribution is especially interesting as few formation channels contribute here and because it is more robust against variations in the cosmic star formation than the highmass end. In this work we explore the stable mass transfer channel for the formation of GW sources with a focus on the lowmass end of the mass distribution. We conduct an extensive exploration of the uncertain physical processes that impact this channel. We note that, for fiducial assumptions, this channel reproduces the peak at ∼9
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

Abstract M _{☉}in the GWobserved binary BH mass distribution remarkably well and predicts a cutoff mass that coincides with the upper edge of the purported neutron star–black hole (NS–BH) mass gap. The peak and cutoff mass are a consequence of the unique properties of this channel; namely (1) the requirement of stability during the mass transfer phases, and (2) the complex way in which the final compact object masses scale with the initial mass. We provide an analytical expression for the cutoff in the primary component mass and show that this adequately matches our numerical results. Our results imply that selection effects resulting from the formation channel alone can provide an explanation for the purported NS–BH mass gap in GW detections. This provides an alternative to the commonly adopted view that the gap emerges during BH formation. 
ABSTRACT Observations by LIGO–Virgo of binary black hole mergers suggest a possible anticorrelation between black hole mass ratio (q = m2/m1) and the effective inspiral spin parameter χeff, the massweighted spin projection on to the binary orbital angular momentum. We show that such an anticorrelation can arise for binary black holes assembled in active galactic nuclei (AGNs) due to spherical and planar symmetrybreaking effects. We describe a phenomenological model in which (1) heavier black holes live in the AGN disc and tend to spinup into alignment with the disc; (2) lighter black holes with random spin orientations live in the nuclear spheroid; (3) the AGN disc is dense enough to rapidly capture a fraction of the spheroid component, but small in radial extent to limit the number of bulk disc mergers; (4) migration within the disc is nonuniform, likely disrupted by feedback from migrators or disc turbulence; (5) dynamical encounters in the disc are common and preferentially disrupt binaries that are retrograde around their centre of mass, particularly at stalling orbits, or traps. Comparisons of predictions in (q, χeff) parameter space for the different channels may allow us to distinguish their fractional contributions to the observed merger rates.

All ten LIGO/Virgo binary black hole (BHBH) coalescences reported following the O1/O2 runs have nearzero effective spins. There are only three potential explanations for this. If the BH spin magnitudes are large, then: (i) either both BH spin vectors must be nearly in the orbital plane or (ii) the spin angular momenta of the BHs must be oppositely directed and similar in magnitude. Then there is also the possibility that (iii) the BH spin magnitudes are small. We consider the third hypothesis within the framework of the classical isolated binary evolution scenario of the BHBH merger formation. We test three models of angular momentum transport in massive stars: a mildly efficient transport by meridional currents (as employed in the Geneva code), an efficient transport by the TaylerSpruit magnetic dynamo (as implemented in the MESA code), and a veryefficient transport (as proposed by Fuller et al.) to calculate natal BH spins. We allow for binary evolution to increase the BH spins through accretion and account for the potential spinup of stars through tidal interactions. Additionally, we update the calculations of the stellarorigin BH masses, including revisions to the history of star formation and to the chemical evolution across cosmic time. We find that we can simultaneously match the observed BHBH merger rate density and BH masses and BHBH effective spins. Models with efficient angular momentum transport are favored. The updated stellarmass weighted gasphase metallicity evolution now used in our models appears to be key for obtaining an improved reproduction of the LIGO/Virgo merger rate estimate. Mass losses during the pairinstability pulsation supernova phase are likely to be overestimated if the merger GW170729 hosts a BH more massive than 50 M ⊙ . We also estimate rates of black holeneutron star (BHNS) mergers from recent LIGO/Virgo observations. If, in fact. angular momentum transport in massive stars is efficient, then any (electromagnetic or gravitational wave) observation of a rapidly spinning BH would indicate either a very effective tidal spin up of the progenitor star (homogeneous evolution, highmass Xray binary formation through case A mass transfer, or a spin up of a WolfRayet star in a close binary by a close companion), significant mass accretion by the hole, or a BH formation through the merger of two or more BHs (in a dense stellar cluster).more » « less

Free, publiclyaccessible full text available December 1, 2024

Abstract We search for gravitationalwave (GW) transients associated with fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project, during the first part of the third observing run of Advanced LIGO and Advanced Virgo (2019 April 1 15:00 UTC–2019 October 1 15:00 UTC). Triggers from 22 FRBs were analyzed with a search that targets both binary neutron star (BNS) and neutron star–black hole (NSBH) mergers. A targeted search for generic GW transients was conducted on 40 FRBs. We find no significant evidence for a GW association in either search. Given the large uncertainties in the distances of our FRB sample, we are unable to exclude the possibility of a GW association. Assessing the volumetric event rates of both FRB and binary mergers, an association is limited to 15% of the FRB population for BNS mergers or 1% for NSBH mergers. We report 90% confidence lower bounds on the distance to each FRB for a range of GW progenitor models and set upper limits on the energy emitted through GWs for a range of emission scenarios. We find values of order 10^{51}–10^{57}erg for models with central GW frequencies in the range 70–3560 Hz. At the sensitivity of this search, we find these limits to be above the predicted GW emissions for the models considered. We also find no significant coincident detection of GWs with the repeater, FRB 20200120E, which is the closest known extragalactic FRB.
Free, publiclyaccessible full text available September 28, 2024 
Abstract The global network of gravitationalwave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org . The main data set, consisting of the gravitationalwave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages.more » « lessFree, publiclyaccessible full text available July 28, 2024

Abstract We use 47 gravitational wave sources from the Third LIGO–Virgo–Kamioka Gravitational Wave Detector Gravitational Wave Transient Catalog (GWTC–3) to estimate the Hubble parameter H ( z ), including its current value, the Hubble constant H 0 . Each gravitational wave (GW) signal provides the luminosity distance to the source, and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H ( z ). The source mass distribution displays a peak around 34 M ⊙ , followed by a dropoff. Assuming this mass scale does not evolve with the redshift results in a H ( z ) measurement, yielding H 0 = 68 − 8 + 12 km s − 1 Mpc − 1 (68% credible interval) when combined with the H 0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H 0 estimate from GWTC–1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+ , statistically marginalizing over the redshifts of each event’s potential hosts. Assuming a fixed BBH population, we estimate a value of H 0 = 68 − 6 + 8 km s − 1 Mpc − 1 with the galaxy catalog method, an improvement of 42% with respect to our GWTC–1 result and 20% with respect to recent H 0 studies using GWTC–2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H 0 ) is the welllocalized event GW190814.more » « lessFree, publiclyaccessible full text available June 1, 2024

Free, publiclyaccessible full text available March 1, 2024

Abstract We present the results of a modelbased search for continuous gravitational waves from the lowmass Xray binary Scorpius X1 using LIGO detector data from the third observing run of Advanced LIGO and Advanced Virgo. This is a semicoherent search that uses details of the signal model to coherently combine data separated by less than a specified coherence time, which can be adjusted to balance sensitivity with computing cost. The search covered a range of gravitationalwave frequencies from 25 to 1600 Hz, as well as ranges in orbital speed, frequency, and phase determined from observational constraints. No significant detection candidates were found, and upper limits were set as a function of frequency. The most stringent limits, between 100 and 200 Hz, correspond to an amplitude h 0 of about 10 −25 when marginalized isotropically over the unknown inclination angle of the neutron star’s rotation axis, or less than 4 × 10 −26 assuming the optimal orientation. The sensitivity of this search is now probing amplitudes predicted by models of torque balance equilibrium. For the usual conservative model assuming accretion at the surface of the neutron star, our isotropically marginalized upper limits are close to the predicted amplitude from about 70 to 100 Hz; the limits assuming that the neutron star spin is aligned with the most likely orbital angular momentum are below the conservative torque balance predictions from 40 to 200 Hz. Assuming a broader range of accretion models, our direct limits on gravitationalwave amplitude delve into the relevant parameter space over a wide range of frequencies, to 500 Hz or more.more » « less